

Measurement of the Differential Luminosity at 3 TeV CLIC

- Status Report -

André Sailer, Stéphane Poss

CERN-PH-LCD

Linear Collider Workshop, Arlington, Texas October 2012

Table of Contents

- 1 Goal and Limits for our Study
- 2 What is the Goal of this Measurement?
- 3 What Do We Measure in the Detector?
- 4 Luminosity Spectrum at CLIC 3 TeV
 - Beam-Energy Spread
 - Beamstrahlung
- 5 Model for the Luminosity Spectrum
 Fitting Spectrum Directly
- 6 Cross-Section, Initial State Radiation, and Detector Resolutions
 - Simulation of Bhabha Scattering
 - Detector Resolutions
 - Impact on Smuon Mass Measurement
- 7 Summary, Conclusion, and Outlook

Goal and Limits of our Study

- How does the uncertainty in the luminosity spectrum affect measurements at CLIC 3 TeV?

 - Integrated Luminosity 2 ab⁻¹
- Studied lumi spectrum in light of these benchmarks
- Including relevant effects for reconstruction
- Can use a minimal model to describe the luminosity spectrum, do not need a complete and global description of the spectrum from $\sqrt{s'} = 0$ TeV - 3 TeV

What is the Goal of this Measurement?

- Goal: The distribution of the pairs of particle energies prior to initial state radiation *L*(*x*₁, *x*₂)
 - Only reconstructing the centre-of-mass energy ignores the longitudinal boost of the system
 - Strong correlation between the two particle energies
 - Account for Asymmetric beams
 - Initial state radiation depends on the specific process and centre-of-mass energy
- Note: We mostly show the c.m.s. luminosity spectrum L(√s') because it is easier to compare and interpret

$$L(\sqrt{s'}) = \int \mathrm{d}x_1 \int \mathrm{d}x_2 L(x_1, x_2) \delta(\frac{\sqrt{s'}}{\sqrt{s_{\text{nom}}}} - \sqrt{x_1 x_2})$$

Particle Energy Spectrum from GUINEAPIG

What is the Goal of this Measurement?

- Goal: The distribution of the pairs of particle energies prior to initial state radiation *L*(*x*₁, *x*₂)
 - Only reconstructing the centre-of-mass energy ignores the longitudinal boost of the system
 - Strong correlation between the two particle energies
 - Account for Asymmetric beams
 - Initial state radiation depends on the specific process and centre-of-mass energy
- Note: We mostly show the c.m.s. luminosity spectrum L(√s') because it is easier to compare and interpret

$$L(\sqrt{s'}) = \int \mathrm{d}x_1 \int \mathrm{d}x_2 L(x_1, x_2) \delta(\frac{\sqrt{s'}}{\sqrt{s_{\mathrm{nom}}}} - \sqrt{x_1 x_2})$$

Luminosity Spectrum from GUINEAPIG

What Do We Measure in the Detector?

- Need large cross-section and well known process: Bhabha scattering
- In the detector we measure the final state particles affected by the cross-section (initial state radiation, final state radiation, $\sqrt{s'}$ dependence)
- There is no way, for an individual event, to know if the energy was lost from initial state radiation or Beamstrahlung
- The measured values are also affected by the resolution of the respective subdetector

Distributions after Bhabha scattering and cross-section (without detector resolutions)

What Do We Measure in the Detector?

- Need large cross-section and well known process: Bhabha scattering
- In the detector we measure the final state particles affected by the cross-section (initial state radiation, final state radiation, $\sqrt{s'}$ dependence)
- There is no way, for an individual event, to know if the energy was lost from initial state radiation or Beamstrahlung
- The measured values are also affected by the resolution of the respective subdetector

Distributions after Bhabha scattering and cross-section (without detector resolutions)

Beta-Distributions

 Mostly using Beta-Distributions for the description of the luminosity spectrum

$$b(x) = \frac{1}{N} x^{a_1} (1-x)^{a_2}$$

with different parameter bounds

• Limited to 0 < x < 1

Beam-Energy Spread I

 Energy distribution mostly due to intra-bunch wakefields and RF phase offset

- Bunch travelling towards the left
- Front of bunch gains more energy and wakefields reduce effective gradient for the tail

Particle energy vs. longitudinal position from the accelerator simulation

Beam-Energy Spread II

Particle energy distribution from accelerator simulation

 Tried several different functions to fit, settled on beta-distribution convoluted with Gauss

$$\mathsf{BES}(x) = \int_{x_{\min}}^{x_{\max}} b(\tau) \mathrm{Gauss}(x-\tau) \mathrm{d}\tau$$

 5 parameters, including min. and max. of beta-distribution range

Beam-Energy Spread III

de

- Due to the correlation,
 Beamstrahlung, and beam-beam effects two vastly different
 beam-energy spread distributions
 emerge for the luminosity spectrum
- Peak Region: Both particles with $E > 0.995 E_{\text{Beam}}$
- Arms Region: Only one of the particles with E > 0.995E_{Beam}
- Both can be fit with a beta-distribution convoluted with a Gauss

Peak of the luminosity spectrum

Beam-Energy Spread III

- Due to the correlation, Beamstrahlung, and beam-beam effects two vastly different beam-energy spread distributions emerge for the luminosity spectrum
- Peak Region: Both particles with $E > 0.995 E_{\text{Beam}}$
- Arms Region: Only one of the particles with E > 0.995E_{Beam}
- Both can be fit with a beta-distribution convoluted with a Gauss

Particle energy distribution from the GUINEAPIG simulation

Beamstrahlung

- Second contribution to luminosity spectrum is energy loss due to Beamstrahlung
- Potentially large loss of energy for some particles
- 30% in the top 1%
- Currently limited to $0.5\sqrt{s_{\text{nom}}}$ and a single beta-distribution
- Particle energy is convolution of Beamstrahlung and beam-energy spread effect

Description of the MODEL

For the Function:

- Divide the luminosity spectrum in four different regions
- Individual regions described by convolutions of beam-energy spread functions and Beamstrahlung functions (or just Beamstrahlung functions)
- Created a 2D probability density function which enables the generation of the luminosity spectrum according to the MODEL
- For this model: 20 free parameters

For an efficient extraction of the parameters a reweighting fit is used

- Create 'real' spectrum, taken from GUINEAPIG (GP-Sample)
- Create a luminosity spectrum according to MODEL (MODEL-Sample)
- Fit Level a) Use the particle energy spectra directly
- Fit Level b) Simulate Bhabha events, add detector effects, use observables for fit
 - Vary the parameters and change the weight of all events to minimize the χ^2 between GP-Sample and MODEL-Sample

Technicalities

Example for 3D binning structure

- Implemented re-weighting loop to allow for parallelization with OpenMP
 - Running happily on 16 cores on lxplus machines
 - No systematic study, but it still scales
- Implemented Equi-Probability Binning in 2 and 3 Dimensions
 - Statistically optimal use of available events

Fitting Spectrum Directly

- Fit the 2D distribution of *Particle* energies
- 1 million GP events and 3 million according to MODEL
- No cross-section, initial state radiation, or detector effects
- Spectrum reconstructed within 5% down to $0.6\sqrt{s_{nom}}$, but few percent offset in the tail
 - Only statistical errors from GUINEAPIG sample
 - Error due to parameters smaller
- In the topmost bin: ∆L/L = 0.0038±0.0017(stat)±0.0006(par)

Fitting Spectrum Directly

- Fit the 2D distribution of *Particle* energies
- 1 million GP events and 3 million according to MODEL
- No cross-section, initial state radiation, or detector effects
- Spectrum reconstructed within 5% down to $0.6\sqrt{s_{nom}}$, but few percent offset in the tail
 - Only statistical errors from GUINEAPIG sample
 - Error due to parameters smaller
- In the topmost bin: ∆L/L = 0.0038±0.0017(stat)±0.0006(par)

Fitting Spectrum Directly

- Fit the 2D distribution of *Particle* energies
- 1 million GP events and 3 million according to MODEL
- No cross-section, initial state radiation, or detector effects
- Spectrum reconstructed within 5% down to $0.6\sqrt{s_{nom}}$, but few percent offset in the tail
 - Only statistical errors from GUINEAPIG sample
 - Error due to parameters smaller
- In the topmost bin: ∆L/L = 0.0038±0.0017(stat)±0.0006(par)

Simulation of Bhabha Scattering

- Effective Cross-Section $\sigma(\sqrt{s'} > 1.5 \text{ TeV}, 7^{\circ} < \theta < 173^{\circ}) = 10 \text{ pb}$
- About 1 million events in 100 fb⁻¹
- Create luminosity events scaled with 1/s' in GUINEAPIG and the MODEL to have unweighted events following the Bhabha cross-section
- Use energy pairs from GUINEAPIG and MODEL as input to BHWIDE and simulate Bhabha scattering

Observables in the Detector I

- Use the angles of the outgoing electrons to reconstruct precisely the spectrum around the peak
- Reconstruct relative centre-of-mass energy from acollinearity
- High resolution tracker with angular resolution below 20 μrad above E = 200 GeV

Relative c.m.s. Energy

$$\frac{\sqrt{s_{\text{acol}}}}{\sqrt{s_{\text{nom}}}} = \sqrt{\frac{\sin(\theta_1) + \sin(\theta_2) + \sin(\theta_1 + \theta_2)}{\sin(\theta_1) + \sin(\theta_2) - \sin(\theta_1 + \theta_2)}},$$

Assuming photon radiation only by one of the particles

LCWS12, Arlington, Texas, Oct. 2012

Observables in the Detector I

Use the angles of the outgoing electrons to reconstruct precisely the spectrum around the peak

energy from acollinearity

E = 200 GeV

resolution below 20 µrad above

Angular Resolution ($e^{\pm}, \theta > 7^{\circ}$)

$$\frac{\sqrt{s_{\text{acol}}}}{\sqrt{s_{\text{nom}}}} = \sqrt{\frac{\sin(\theta_1) + \sin(\theta_2) + \sin(\theta_1 + \theta_2)}{\sin(\theta_1) + \sin(\theta_2) - \sin(\theta_1 + \theta_2)}},$$

Assuming photon radiation only by one of the particles

LCWS12, Arlington, Texas, Oct. 2012

Observables in the Detector I

Use the angles of the outgoing electrons to reconstruct precisely the spectrum around the peak

- Reconstruct relative centre-of-mass energy from acollinearity
- High resolution tracker with angular resolution below 20 μrad above E = 200 GeV

Relative c.m.s. Energy: Smeared

$$\frac{\sqrt{s_{\text{acol}}}}{\sqrt{s_{\text{nom}}}} = \sqrt{\frac{\sin(\theta_1) + \sin(\theta_2) + \sin(\theta_1 + \theta_2)}{\sin(\theta_1) + \sin(\theta_2) - \sin(\theta_1 + \theta_2)}},$$

Assuming photon radiation only by one of the particles

LCWS12, Arlington, Texas, Oct. 2012

Observables in the Detector II

- Additional information from electron energies measured in the calorimeters (at low angle momentum resolution is worse)
- Include detector effects via 4-vector smearing, using resolutions obtained from Full-Detector Simulation, Background overlay, and full reconstruction

Particle Energy

Observables in the Detector II

Additional information from electron energies measured in the calorimeters (at low angle momentum resolution is worse)

 Include detector effects via 4-vector smearing, using resolutions obtained from Full-Detector Simulation, Background overlay, and full reconstruction

Energy Resolution

Observables in the Detector II

Additional information from electron energies measured in the calorimeters (at low angle momentum resolution is worse)

 Include detector effects via 4-vector smearing, using resolutions obtained from Full-Detector Simulation, Background overlay, and full reconstruction

Particle Energy: Smeared

Reconstructed Spectrum

- Including Cross-section, initial/final state radiation (some photon recovery), and detector resolutions
- 2 Million Bhabha Events
 400 fb⁻¹(selection efficiency 50%)
- Use 3D histogram for χ² minimisation: √s_{acol}, E₁, E₂
- Spectrum reconstructed within 5% down to $0.6\sqrt{s_{nom}}$, but few percent offset (the opposite way than in the pure spectrum fit)
- Larger deviation just below the peak
- In the topmost bin: △L/L = 0.016±0.0017(stat)±0.0009(par)

Reconstructed Spectrum

- Including Cross-section, initial/final state radiation (some photon recovery), and detector resolutions
- 2 Million Bhabha Events
 400 fb⁻¹(selection efficiency 50%)
- Use 3D histogram for χ² minimisation: √s_{acol}, E₁, E₂
- Spectrum reconstructed within 5% down to $0.6\sqrt{s_{nom}}$, but few percent offset (the opposite way than in the pure spectrum fit)
- Larger deviation just below the peak
- In the topmost bin: △L/L = 0.016±0.0017(stat)±0.0009(par)

Reconstructed Spectrum

- Including Cross-section, initial/final state radiation (some photon recovery), and detector resolutions
- 2 Million Bhabha Events
 400 fb⁻¹(selection efficiency 50%)
- Use 3D histogram for χ^2 minimisation: $\sqrt{s_{acol}}$, E_1 , E_2
- Spectrum reconstructed within 5% down to $0.6\sqrt{s_{nom}}$, but few percent offset (the opposite way than in the pure spectrum fit)
- Larger deviation just below the peak
- In the topmost bin: △L/L = 0.016±0.0017(stat)±0.0009(par)

Impact on Smuon Mass Measurement(LCD-Note-2011-018)

- $\blacksquare \ e^+e^- \rightarrow \widetilde{\mu}^+\widetilde{\mu}^- \rightarrow \mu^+\mu^-\widetilde{\chi}^0_1\widetilde{\chi}^0_1$
- Fit background subtracted muon energy distribution to extract smuon and neutralino mass with f(E_µ; m_µ, m_χ) = Box ⊗ σ(√s') ⊗ L(p) ⊗ ISR ⊗ DetRes
- Fit with all parameters of luminosity spectrum varied by $\pm \sigma_p^i/2$ individually Error on smuon mass from luminosity:

■ Using L_{GP} : $m_{\tilde{\mu}} = (1006.2 \pm 4.6 (\text{stat})) \text{ GeV}, m_{\chi} = (339.4 \pm 6.0 (\text{stat})) \text{ GeV}$ ■ Using L_{Reco} : $m_{\tilde{\mu}} = (1005.0 \pm 2.0 (\text{par})) \text{ GeV}, m_{\chi} = (339.1 \pm 1.8 (\text{par})) \text{ GeV}$

- The CLIC beams produce a rather peculiar luminosity spectrum
- The reconstruction of spectrum is possible
- The error from the reconstruction of the spectrum for CLIC-3 TeV-benchmark smuon mass measurement is significantly smaller than the statistical error
- Depending on the analysis a more detailed model for the spectrum is needed, our MODEL can be extended there is room for improvement

Backup Slides

Mathematical Description

$$\begin{split} \mathcal{L}(x_1, x_2) &= p_{\text{Peak}} \quad \delta(1 - x_1) \otimes \text{BES}\left(x_1; [p]_1^{\text{Peak}}\right) \\ &\quad \delta(1 - x_2) \otimes \text{BES}\left(x_2; [p]_2^{\text{Peak}}\right) \\ &+ p_{\text{Arm1}} \quad \delta(1 - x_1) \otimes \text{BES}\left(x_1; [p]_1^{\text{Arm}}\right) \\ &\quad \text{BB}\left(x_2; [p]_2^{\text{Arm}}, \beta_{\text{limit}}^{\text{limit}}\right) \\ &+ p_{\text{Arm2}} \qquad \text{BB}\left(x_1; [p]_1^{\text{Arm}}, \beta_{\text{limit}}^{\text{limit}}\right) \\ &\quad \delta(1 - x_2) \otimes \text{BES}\left(x_2; [p]_2^{\text{Arm}}\right) \\ &+ p_{\text{Body}} \qquad \text{BG}\left(x_1; [p]_1^{\text{Body}}, \beta_{\text{limit}}^2\right) \\ &\quad \text{BG}\left(x_2; [p]_2^{\text{Body}}, \beta_{\text{limit}}^2\right) \end{split}$$

With

$$\mathsf{BB}(x) = (b \otimes \mathsf{BES})(x)$$