

Plans for Radiation Damage Studies for Si Diode Sensors Subject to GRaD Doses

International Linear Collider Workshop University of Texas at Arlington October 22-26, 2012

LCLS and ESA

Use pulsed magnets in the beam switchyard to send beam in ESA.

ESTB parameters

Table 1.1.1. ESTB primary electron beam parameters and experimental area at the BSY and in ESA

Parameters	ESA
Energy	15 GeV
Repetition Rate	5 Hz
Charge per pulse	0.35 nC
Energy spread, σ_E / E	0.02%
Bunch length rms	100 µm
Emittance rms ($\gamma \varepsilon_x, \gamma \varepsilon_y$)	(4, 1) 10 ⁻⁶ m-rad
Spot size at waist $(\sigma_{x,y})$	< 10 µm
Drift Space available for experimental apparatus	60 m
Transverse space available for experimental apparatus	5 x 5 m

July 1 00:00-July 31 23:59 2012, BEND:DMP1:400:BACT

The Issue: ILC BeamCal Radiation Exposure

ILC BeamCal:

Covers between 5 and 40 miliradians **Radiation doses up** to 100 MRad per year **Radiation initiated by** electromagnetic particles (most extant studies for hadron induced)

EM particles do little damage; might damage be come from small hadronic component of shower?

G.P. Summers et al., IEEE Trans Nucl Sci 40, 1372 (1993)

Damage coefficients less for p-type for $E_{e^-} < ~1$ GeV (two groups); note **critical energy** in W is ~10 MeV But: Are electrons the entire picture?

Hadronic Processes in EM Showers

There seem to be three main processes for generating hadrons in EM showers (all induced by **photons**):

- Nuclear ("giant dipole") resonances Resonance at 10-20 MeV (~E_{critical})
- Photoproduction Threshold seems to be about 200 MeV
- Nuclear Compton scattering Threshold at about 10 MeV; ∆ resonance at 340 MeV

These are largely isotropic; must have most of hadronic component develop near sample

5.5 GeV Shower Profile

Hadronic Processes in EM Showers

Status: Thermal prototype under testing at SCIPP

Proposed split radiator configuration

Radius (cm)

Charge Collection Apparatus

Need to upgrade CC Apparatus for multiple samples

- New detector board to modularize system (connector rather than bonds)
- Two pitch adapters (lithogaphic) to accommodate different detector pitches
- Modifications to ASIC board
- Most components in hand now

Rastering

Need uniform illumination over 0.25x0.75 cm region (active area of SCIPP's charge collection measurement apparatus).

→Raster in 0.05cm steps over 0.6x1.5 cm, assuming fluence profile on prior slide (see next slide for result)

Exposure rate:

$$GRad \approx \frac{600}{I_{beam}(nA) \bullet E_{beam}(GeV)}$$
 hours

e.g. 100 MRad at 1 nA 13.6 GeV e⁻ → ~ 5 Hrs

RUN PLAN

- At SCIPP (left over from ATLAS rad. damage studies)
- Oxygenated Float-Zone and Magnetic Czochralski sensors
 Both n- and p-type for both
- Proposed "real-time" charge-collection measurement after stepped exposures of (1, 3, 10, 30, 100) MRad.
- Will assess results and then run one or two large exposures with single distant radiator (eliminate hadronic component) (4-5 shifts for 100 MRad)

WRAP-UP

• A somewhat involved study of radiation damage to silicon diode sensors

• Will look at n- and p-type float-zone and Czochralski sensors

• Will include nuclear component in shower; perform control study with EM-only beam

• Will operate ~100 W target at sub-freezing to avoid annealing

• Need to be able to accommodate beam energy ranges between 3 and 15 GeV

Have applied for beam time in early winter

Backup

Shower Max Results

Photon production ~independent of incident energy!

Fluence (e⁻ and e⁺ per cm²) per incident 5.5 GeV electron (5cm pre-radiator 13 cm post-radiator with 1m separation)

5.5 GeV Electrons After 18mm Tungsten Block

uniform illumination of detector. Instead: split 18mm W between "pre" and "post" radiator separated by large distance

Not amenable for

Caution: nuclear production is ~isotropic → must happen dominantly in "post" radiator!

Radius (cm)

NIEL (Non-Ionizing Energy Loss)

Conventional wisdom: Damage proportional to Non-Ionizing Energy Loss (NIEL) of traversing particle

- **NIEL** can be calculated (e.g. G.P. Summers et al., IEEE Trans Nucl Sci **40**, 1372 [1993])
- At $E_c^{Tungsten} \sim 10$ MeV, **NIEL** is 80 times worse for protons than electrons and
- **NIEL** scaling may break down (even less damage from electrons/positrons)
- **NIEL** rises quickly with decreasing (proton) energy, and fragments would likely be low energy

Might small hadronic fractions dominate damage?

BeamCal Incident Energy Distribution

Rates (Current) and Energy

Basic Idea:

Direct electron beam of moderate energy on Tungsten radiator; insert silicon sensor at shower max

For Si, 1 GRad is about 3 x 10¹⁶/cm², or about 5 mili-Coulomb/cm²

Reasonably intense moderate-energy electron or photon beam necessary

What energy...?

Proposed split radiator configuration

Radius (cm)

Illumination Profile

Uniform to $\pm 10\%$ over (3x6)mm area