Beamsize

Oide effec

Radiation on bending magnets o oooo oooo

< □ > < 同 >

FFS Lattice optimization for Synchrotron Radiation effects

Oscar Blanco

CERN, LAL

October 25, 2012

CERN. LAL

Oscar Blanco

Oide effect	Radiation on bending magnets	References
00 00	0 0000 0000	

Table of contents

Beamsize

Oide effect Introduction Results and conclusions

Radiation on bending magnets

Introduction Is it possible to obtain zero contribution? (Optimization) Results and conclusions

CERN, LAL

- (E

Oscar Blanco

Beamsize	Olde effect 00 00	Radiation on bending magnets O OOOO OOOO	Keferences
Beamsize			

We are interested in the beamsize at the IP.

Horizontal plane

 $\sigma^{2} = \sigma_{0}^{2} + \sigma_{e}^{2} + \sigma_{rad}^{2}$ $\sigma^{2} = \sigma_{0}^{2} + \sigma_{e}^{2} + \sigma_{bends}^{2}$

Vertical plane

$$\sigma^{2} = \sigma_{0}^{2} + \sigma_{e}^{2} + \sigma_{rad}^{2}$$
$$\sigma^{2} = \sigma_{0}^{2} + \sigma_{e}^{2} + \sigma_{oide}^{2}$$

∃ → < ∃</p>

$$\sigma_0 \equiv \text{zero}^{\text{th}}$$
 order approx.
 $\sigma_e \equiv \text{result}$ from aberrations
 $\sigma_{rad} \equiv \text{interaction}$ with magnets

CERN. LAL

Oscar Blanco

	Oide effect ●○ ○○	Radiation on bending magnets 0 0000 0000	References
Introduction			

$$F(\sqrt{K}L,\sqrt{K}L^*) = \int_0^{\sqrt{K}L} |\sin\phi + \sqrt{K}L^* \cos\phi|^3 \left[\int_0^{\phi} (\sin\phi' + \sqrt{K}L^* \cos\phi')^2 d\phi'\right]^2 d\phi$$

CERN

CERN. LAL

Equation derived by [1].

Oscar Blanco

Two approaches

For a given L^* , what is the gradient K that minimizes $F(\sqrt{K}L, \sqrt{K}L^*)$?

CERN. LAL

Oscar Blanco

Oscar Blanco

	Oide effect ○○ ○●	Radiation on bending magnets o oooo oooo	References
Results and conclusions			

- Longer quadrupoles for the final doublet with lower gradient could reduce the Oide effect.
- There will always be a contribution to the beam size due to Oide effect.
- Importance of this effect is increased when targeting the higher energies (CLIC 3TeV).

- 14	60	m		<u> </u>
-	'Ea			

Oide effect

Radiation on bending magnets

References

Introduction

Equation derived by [2].

Oscar Blanco

FFS Lattice optimization for Synchrotron Radiation effects

CERN. LAL

Is it possible to cancel this term? (Optimization)

Suppose there is a dipole that contributes to beamsize according to

$$\sigma_{bends}^2 = C_2 \beta^* \int E^5 \left(\frac{1}{\rho^3}\right) H(s) \cos^2 \Phi(s) ds$$

It might be possible to cancel all term by making

$$\cos \Phi(s) = 0, \forall s$$

then,

$$\Phi(s) = \phi(IP) - \phi(s) + \alpha(s) = (2n+1)\frac{\pi}{2}, \qquad n \in Z$$

< □ > < 同 >

CERN, LAL

Oscar Blanco

	Oide effect	Radiation on bending magnets	References
	00		
	00	0000	
Is it possible to obta	ain zero contribution? (Optimizatio	on)	

Using,

$$\alpha(s) = \arctan\left(\frac{\beta'}{2} - \frac{\beta\eta'}{\eta}\right), \qquad \tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$$

The dispersion function η that makes $\Phi(s) = (2n+1)\pi/2, \forall s$ is:

$$\eta(s) = \eta_0 \left(\frac{\beta(s)}{\beta_0}\right)^{\frac{1}{2}} \frac{\sin(\phi(IP) - \phi(s))}{\sin(\phi(IP) - \phi_0)}$$

It is a **betatron oscillation**. It is not possible to produce such function because the dipole adds dispersion. Therefore, the only possibility is to minimize the effect.

CERN, LAL

< A

	Oide effect	Radiation on bending magnets	References
		0000	
		0000	
Is it possible to obta	in zero contribution? (Optimization	on)	

Before optimizing...

Rewriting the equation

$$\sigma_{bends}^{2} = C_{2}\beta^{*}\int E^{5}\left(\frac{1}{\rho^{3}}\right)H(s)\cos^{2}\Phi(s)ds$$

$$\sigma_{bends}^{2} = C_{2}\beta^{*}E^{5}\int\left(\frac{1}{\rho^{3}\beta}\right)\left[\eta\cos\Delta\phi(s,IP)\right] + (\alpha\eta + \beta\eta')\sin\Delta\phi(s,IP)\right]^{2}ds$$

when β is large, $\Delta\phi(s, IP) \simeq$ constant. Then, values above brackets define weights during the optimization. If β is small, then, all term squared in brackets should be minimized $(\eta \rightarrow 0)$.

CERN, LAL

< □ > < 同 >

Optimization

The total longitud is fixed.

Total angle distribution will be changed to minimize σ_{bends} , under the following constraints:

-

$$\eta_x(IP) = 0$$

• $\eta'_{x}(IP) = \text{constant value}$

CERN. LAL

Oscar Blanco

	Oide effect	Radiation on bending magnets	References
	00		
	00	0000	
		0000	
Results and conclusions			

Oscar Blanco

FFS Lattice optimization for Synchrotron Radiation effects

	Oide effect	Radiation on bending magnets	References
	00	0000	
		0000	
Results and conclusions			

However, beamsize is composed by

$$\sigma^2 = \sigma_0^2 + \sigma_g^2 + \sigma_\delta^2 + \sigma_{bends}^2$$

and, dispersion is used in the lattice to correct geometrical (σ_g) and chromatic (σ_{δ}) aberrations (see [3]). It is required to include sextupoles in the optimization.

Oide effect	Radiation on bending magnets	References
00		
õõ	õooo	
	0000	

Results and conclusions

Oscar Blanco

	Oide effect	Radiation on bending magnets	References
	00	0000	
		0000	
Results and conclusions			

- Lattice optimization for radiation is restricted by the required corrections of aberration.
- Any region with large betas could be used to place bending magnets with minimum effect on radiation.
- Next optimizations will include more parameters.

Oscar Blanco

References

- Oide, Katsunobu. Synchrotron-Radiation Limit on the Focusing of Electron Beams. Phys. Rev. Lett. 61 – Issue 15, Oct, 1988. Pages 1713 – 1715.
- Sands, Matthew. Emittance growth from radiation fluctuations. SLAC/AP 47. December, 1985.
- Renier, Ives. Implementation and validation of the linear collider final focus prototype : ATF2 at KEK (Japan). Doctoral Thesis, LAL10-91. June 2010.

CERN, LAL

Image: Image:

	Oide effect	Radiation on bending magnets	References
00 0			
00 0000		0000	
0000		0000	

Additional slide

Dispersion function

$$egin{pmatrix} \eta(s) \ \eta'(s) \ 1 \end{pmatrix} = egin{pmatrix} C(s) & S(s) & D \ C'(s) & S'(s) & D' \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} \eta_0 \ \eta'_0 \ 1 \end{pmatrix}$$

CERN, LAL

A B > 4
 B > 4
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ ► < ∃ →</p>

Oscar Blanco