$H \rightarrow \tau^+ \tau^-$ study in the ILC

Shin-ichi Kawada Hiroshima University

Collaborators:

Tomohiko Tanabe (ICEPP, Univ. of Tokyo), Taikan Suehara (ICEPP, Univ. of Tokyo), Tohru Takahashi (Hiroshima Univ.), Keisuke Fujii (KEK)

Introduction

- Higgs-like particle was found at the LHC!
- Investigation of the detail of that particle is important, especially the verification of mass generation mechanism.

Full simulation of $H \rightarrow \tau^+ \tau^$ mode has not been done.

Motivation for precision measurement

Any deviation in Higgs coupling and mass relation is an indication of new physics.

The small theoretical uncertainty in τ mass makes the $H \rightarrow \tau^+ \tau^-$ branching ratio an ideal probe for new physics.

Target of this study

- Estimation of precision of branching ratio of $H \rightarrow \tau^+ \tau^-$ mode
- Previous study with fast simulation --> 4.6 - 7.1 % (M_H = 120 GeV, RDR)
- In this study, we evaluate the precision with full detector simulation for the first time at $E_{CM} = 250$ GeV.

Analysis condition

- Higgs properties
 - $-M_{H} = 120 \text{ GeV}$
 - $\operatorname{Br}(H \rightarrow \tau^+ \tau^-) = 8.7 \%$
- Machine parameters
 - $-E_{\rm CM}$ = 250 GeV
 - Integrated luminosity $L = 250 \text{ fb}^{-1}$,
 - Polarization $P(e^+, e^-) = (+0.3, -0.8)$
- Simulation conditions
 - Full simulation with ILD model
 - Using LOI samples for now (to be updated with DBD simulation tools in the future)

Signal

Main background

Event reconstruction

1: Z reconstruction

• lepton ID identify e/μ by using $\frac{E_{\text{ECAL}}}{E_{\text{ECAL}} + E_{\text{HCAL}}}$ and $\frac{\frac{E_{\text{ECAL}} + E_{\text{HCAL}}}{P_{\text{track}}}$

• au rejection

do not use tracks displaced from IP

clustering based on au mass

Z reconstruction (1): Lepton ID

Z reconstruction (2) : τ rejection

use impact parameter for τ rejection d_0 : perpendicular to beam axis (x-y plane) z_0 : along to beam axis

τ rejection ($Z \rightarrow \mu^+ \mu^-$)

τ rejection ($Z \rightarrow \mu^+ \mu^-$)

τ reconstruction

Event selection ($Z \rightarrow \mu^+ \mu^-$)

Event selection ($Z \rightarrow \mu^+ \mu^-$)

Results

	$ZH \\ \rightarrow ee\tau\tau$	<i>ΖΗ</i> no τ	<i>ее</i> ττ	other 4 lep.	other SM Bkg				
No cut	228.3	7320	2.382e+05	5.423e+05	1.494e+10				
After cut	97.2	2.5 63.6		7.7	0.025				
significance $(Z \to e^+e^-) = \frac{97.2}{\sqrt{97.2 + 73.8}} = 7.4$									

	ZH $ ightarrow \mu\mu au au$	<i>ΖΗ</i> no τ	μμττ	other 4 lep.	other SM Bkg			
No cut	211.1	7320	3513	7.589e+05	1.494e+10			
After cut	129.5	3.2	84.0	17.8	0.16			
significance $(7 \rightarrow u^+ u^-) = \frac{129.5}{5}$								
Significance $(Z \to \mu \ \mu \) = \frac{1}{\sqrt{129.5 + 105.2}} = 0.5$								

Summary

- We evaluated the precision of the branching ratio of $H \rightarrow \tau^+ \tau^-$ with full detector (ILD) simulation at $E_{CM} = 250$ GeV.
 - $-ZH \rightarrow e^+e^-\tau^+\tau^-$: estimated yield = 97.2, significance = 7.4
 - $-ZH \rightarrow \mu^+\mu^-\tau^+\tau^-$: estimated yield = 129.5, significance = 8.5
- Combined significance = 11.3 $\langle --- \rangle \Delta(\sigma \cdot Br) / (\sigma \cdot Br) = 9 \% (Z \rightarrow l^+ l^-)$
- Next step: Analysis of $Z \rightarrow q \overline{q}$

Backup slides

Lepton ID

l/τ separation ($Z \rightarrow e^+e^-$)

l/τ separation ($Z \rightarrow e^+e^-$)

FSR / Brems recovery

Primary track selection $(Z \rightarrow e^+e^-)$

Primary track selection ($Z \rightarrow \mu^+ \mu^$ energy of pfo > 20 d0/d0err of pfo < 3 10³ 100 80 10² 60 10 40 20 100 10 abs(pfo_d0sig) pfo_e |z0/z0err| of pfo < 7 10^{3}

abs(pfo z0sig)

10²

10

 $ZH \rightarrow \mu\mu\tau\tau$ sample μ from $Z \rightarrow \mu\mu$ μ from $\tau \rightarrow \mu\nu\nu$ (from Higgs) hadrons from τ (from Higgs)

Cut 0 (pre-selection): require e^+e^- candidate, # of τ^- candidate == 1, # of τ^+ candidate == 1, Cut 1: # of tracks <= 8 Cut 2: $110 < E_{\rm vis} < 240$ Cut 3: $|\cos\theta_{\text{missmom}}| < 0.98$ Cut 4: $70 < M_7 < 110$ Cut 5: $90 < E_Z < 120$ Cut 6: $\cos \theta_{e^-} < 0.92$, $\cos \theta_{e^+} > -0.92$ Cut 7: 20 $< E_{\rho^{-}} < 90, 20 < E_{\rho^{+}} < 90$ Cut 8: $\cos \theta_{e^+e^-} < -0.2$ Cut 9: $\cos \theta_{\tau^+ \tau^-} < -0.4$ Cut 10: $\cos\theta_{\tau^{-}} < 0.92$, $\cos\theta_{\tau^{+}} > -0.92$ Cut 11: $116 < M_{recoil} < 134$

Cuts for $Z \rightarrow e^+e^-$ (after pre-selection)

of tracks <= 8</pre>

$110 < E_{\rm vis} < 240$

$|\cos\theta_{\rm missmom}| < 0.98$

$7\overline{0} < M_Z < \overline{110}$

$90 < E_Z < 120$

 $\cos\theta_{e^+} > -0.92$, $\cos\theta_{e^-} < 0.92$

 $20 < \overline{E_{e^+}} < 90, 20 < \overline{E_{e^-}} < 90$

 $\cos\theta_{e^+e^-} < -0.2$

 $\cos\theta_{\tau^+\tau^-} < -0.4$

 $\cos\theta_{\tau^+} > -0.92, \cos\theta_{\tau^-} < 0.92$

$116 < M_{\rm recoil} < 134$

Cuts	eeH	not $H o au au$	εεττ	other 4 leptons	ee	εγ	үү	other SM Bkg	sig.
none	228.3	7320	2.382e+05	5.243e+05	4.325e+09	3.022e+09	7.532e+09	6.350e+07	0.00187
pre-sel	171.3	47.05	1.338e+04	2.091e+05	4.692e+06	1.365e+06	4.146e+06	4.702e+04	0.0534
# of tracks <= 8	169.4	41.56	1.316e+04	2.083e+05	4.560e+06	1.352e+06	4.131e+06	4.218e+04	0.0532
$110 < E_{\rm vis} < 240$	167.4	39.41	1.216e+04	1.562e+04	2.422e+06	8.830e+05	3.406e+06	2.563e+04	0.0642
$ \cos\theta_{ m missmom} $ < 0.98	164.4	38.33	8987	3164	6.936e+05	4.364e+04	31.26	1.044e+04	0.189
$70 < M_Z < 110$	154.7	30.60	2653	1039	6177	2.091e+04	23.83	1130	0.863
$90 < E_Z < 120$	150.6	28.99	1085	394.5	0	1.840e+04	23.83	638.3	1.05
$\begin{array}{l} \cos \theta_{e^-} < 0.92 \\ \cos \theta_{e^+} > -0.92 \end{array}$	136.2	25.43	473.8	111.5	0	225.0	0	311.9	3.80
$\begin{array}{l} 20 < E_{e^-} < 90 \\ 20 < E_{e^+} < 90 \end{array}$	135.5	25.40	407.1	100.9	0	225.0	0	259.3	3.99
$\cos\theta_{e^-e^+} < -0.2$	134.0	25.05	354.7	89.55	0	225.0	0	257.5	4.07
${\rm cos}\theta_{\tau^-\tau^+}<-0.4$	132.2	4.159	214.6	64.91	0	0	0	151.2	5.55
$\begin{array}{l} \cos \theta_{\tau^-} < 0.98 \\ \cos \theta_{\tau^+} > -0.98 \end{array}$	124.7	3.697	186.8	19.69	0	0	0	3.545	6.78
$116 < M_{\rm recoil} < 134$	97.19	2.491	63.61	7.657	0	0	0	0.025	7.43

Event selection ($Z \rightarrow \mu^+ \mu^-$)

Cut 0 (pre-selection): require $\mu^+\mu^-$ candidate, # of τ^+ candidate == 1, # of τ^- candidate == 1 Cut 1: # of tracks ≤ 8 Cut 2: $110 < E_{\rm vis} < 240$ Cut 3: $|\cos\theta_{\rm missmom}| < 0.98$ Cut 4: $70 < M_7 < 110$ Cut 5: $90 < E_Z < 120$ Cut 6: $E_{e^+} < 90$, $E_{e^-} < 90$ Cut 7: $\cos \theta_{\rho^+ \rho^-} < -0.2$ Cut 8: $\cos\theta_{\tau^+\tau^-} < -0.45$ Cut 9: $118 < M_{recoil} < 140$

Cuts for $Z \rightarrow \mu^+ \mu^-$ (after pre-selection)

of tracks <= 8</pre>

$110 < E_{\rm vis} < 240$

$|\cos\theta_{\rm missmom}| < 0.98$

$70 < M_Z < 110$

$90 < E_Z < 120$

 $\overline{E_{e^+}} < 90, E_{e^-} < 90$

 $\cos\theta_{e^+e^-} < -0.2$

all

 $\cos\theta_{\tau^+\tau^-} < -0.45$

$118 < M_{\rm recoil} < 140$

Cuts	μμΗ	not $H o au au$	μμττ	other 4 leptons	ee	εγ	γγ	other SM Bkg	sig.
none	211.1	7320	3513	7.589e+05	4.325e+09	3.023e+09	7.532e+09	6.350e+07	0.00187
pre-sel	168.5	43.01	1698	7547	0	6062	71.56	1598	1.28
# of tracks <= 8	167.4	39.65	1684	7538	0	6062	71.56	1266	1.29
$110 < E_{\rm vis} < 240$	164.8	37.85	1629	2973	0	3081	33.17	638.7	1.78
$ \cos\theta_{ m missmom} < 0.98$	160.6	36.97	1423	434.1	0	0	0	61.42	3.49
$70 < M_Z < 110$	156.2	33.01	1078	129.0	0	0	0	47.94	4.11
$90 < E_Z < 120$	154.6	32.55	394.5	81.93	0	0	0	38.15	5.86
$\begin{array}{l} E_{e^-} < 90 \\ E_{e^+} < 90 \end{array}$	154.6	32.55	366.4	73.89	0	0	0	34.01	6.01
$\cos\theta_{e^+e^-} < -0.2$	152.8	32.23	321.4	68.64	0	0	0	33.85	6.19
${\rm cos}\theta_{\tau^+\tau^-}<-0.45$	149.0	3.948	184.2	52.78	0	0	0	0.603	7.54
$118 < M_{\rm recoil} < 140$	129.5	3.185	84.02	17.76	0	0	0	0.155	8.46