Extra Higgs bosons and tan β

Koji TSUMUTA (Nagoya U.)
PRESENTATION
The Workshop of Future Linear Colliders (LCWS 2012), Arlington, Texas, USA 22-26/10/2012

Outline:

- Extended Higgs sector
- 2HDMs @ ILC
- Summary

Is it the end of story ?

- We found 125 GeV object !!

It is not the end of story

* Is it scalar ?
* Is it elementary ?
* Is it SM one?
* Hierarchy problem
* DM
* Neutrino mass
* Baryogenesis
* There is no reason to consider the minimal Higgs sector (SM)

Guideline for Ext. Higgs sector

* Custodial symmetry: $\quad \rho=\frac{\sum_{\alpha}\left(I_{\alpha}\left(I_{\alpha}+1\right)-Y_{\alpha}^{2}\right) v_{\alpha}^{2}}{\sum_{\beta} 2 Y_{\beta}^{2} v_{\beta}^{2}}$
* singlet/doublet VEV (or inert multiplets) preserves $\rho=1$

* Minimal extension
* Mix w/ Higgs
* No contrib. to EWSB

*Minimal SM *(Main) contrib. to EWSB Yukawa int. *(SUSY extension)
* higher rep. ($d \geq 3$) has less contributions to EWSB triplet, quadruplet, quintuplet, \cdots
* Neutrino mass generation
* No direct interaction w/ SM particles

Disclaimer

I could not cover all extensions Focus on 2HDM (two Higgs doublet model)

* singlet/doublet VEV (or inert multiplets) preserves $\rho=1$
* Minimal SM
(Main) contrib. to EWSB
* Yukawa int.
*(SUSY extension)
* higher rep. $(d \geq 3)$ has less contributions to EWSB triplet, quadruplet, quintuplet, \cdots

2HDM (two-Higgs-doublet model)

- 2HDM is an effective theory

$$
\Phi_{1}=\binom{\omega_{1}^{+}}{\frac{v_{1}+h_{1}+i z_{1}}{\sqrt{2}}} \quad \Phi_{2}=\binom{\omega_{2}^{+}}{\frac{v_{2}+h_{2}+i z_{2}}{\sqrt{2}}}
$$

- Softly Z_{2} broken 2HDM

$$
\begin{aligned}
V_{2 \mathrm{HDM}}= & m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left(m_{3}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { H.c. }\right)+\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2} \\
& +\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\left[\frac{\lambda_{5}}{2}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\text { H.c. }\right]
\end{aligned}
$$

- 5 Physical Higgs bosons (assume CP inv.) m_{3}^{2}, λ_{5} real

$$
\binom{h_{1}}{h_{2}}=\mathrm{R}(\alpha)\binom{H}{h},\binom{z_{1}}{z_{2}}=\mathrm{R}(\beta)\binom{z}{A},\binom{\omega_{1}^{+}}{\omega_{2}^{+}}=\mathrm{R}(\beta)\binom{\omega^{+}}{H^{+}}, \mathrm{R}(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

2HDM

- Mass spectrum (in the nearly SM-like limit)

$$
M^{2} \equiv m_{3}^{2} /(\sin \beta \cos \beta)
$$

\mathbf{M}^{2} characterizes non-decoupling effects
(Only important for scalar interactions, eg., $\mathrm{hH}^{+} \mathrm{H}^{-}$coupling in $\mathrm{h} \rightarrow \gamma \gamma$)
$m_{H, A, H^{ \pm}}^{2} \sim M^{2}+\frac{\lambda v^{2}}{2} \sim$ Not yet observed

ㅁ gauge-gauge-Higgs coupling: $\sin (\beta-\alpha)(\sim 1)$

$$
h_{---थ^{2} \tilde{\nu}_{V_{\nu}}}^{5^{V_{\mu}}} i g_{V} M_{V} \sin (\beta-\alpha) g_{\mu \nu}
$$

- $\tan \beta\left(=v_{2} / v_{1}\right)$ is a free parameter

Is it SM-like?

Is it SM-like?

$\sin (\beta-\alpha)$ can be different from unity
(Of course, it is too early to say something)

SUSY Higgs search

- SUSY Higgs sector is the most popular 2HDM
- Type-II Yukawa interaction w/ SUSY relation

$$
\sin (\beta-\alpha) \simeq 1-\frac{2 m_{Z}^{4}}{m_{A}^{4} \tan ^{2} \beta}
$$

Yukawa int. for $\mathrm{H}, \mathrm{A}, \mathrm{H}^{+}$is suppressed/enhanced for large $\tan \beta$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Phi_{u}: u, \\
\Phi_{d}: d, \ell
\end{array}\right. \\
& \frac{g_{h t t}}{g_{h t t}^{\mathrm{SM}}}=\sin (\beta-\alpha)+\cot \beta \cos (\beta-\alpha) \simeq 1-\frac{2 m_{Z}^{2}}{m_{A}^{2} \tan ^{2} \beta} \\
& \frac{g_{h b b}}{g_{h b b}^{\mathrm{SM}}}=\frac{g_{h \tau \tau}}{g_{h \tau \tau}^{\mathrm{SM}}}=\sin (\beta-\alpha)-\tan \beta \cos (\beta-\alpha) \simeq 1+\frac{2 m_{Z}^{2}}{m_{A}^{2}} \\
& \frac{g_{H t t}}{g_{h t t}^{S M}}=\cos (\beta-\alpha)-\cot \beta \sin (\beta-\alpha) \simeq-\frac{1}{\tan \beta} \\
& \frac{g_{H b b}}{g_{h b b}^{S M}}=\frac{g_{H \tau \tau}}{g_{h \tau \tau}^{S M}}=\cos (\beta-\alpha)+\tan \beta \sin (\beta-\alpha) \simeq \tan \beta \\
& u \quad d, \ell
\end{aligned}
$$

SUSY Higgs production @ LHC

$$
\frac{g_{H b b}}{g_{h b b}^{\mathrm{SM}}}=\frac{g_{H \tau \tau}}{g_{h \tau \tau}^{\mathrm{SM}}} \simeq \tan \beta
$$

* $\mathrm{gg} \rightarrow \mathrm{h} / \mathrm{H} / \mathrm{A}$ wtith $\mathrm{h} / \mathrm{H} / \mathrm{A} \rightarrow \tau \tau$

* bbh/H/A with $\mathrm{h} / \mathrm{H} / \mathrm{A} \rightarrow \tau \tau$

SUSY Higgs search @ LHC

- LHC results ($\mathrm{H} / \mathrm{A} \rightarrow \tau \tau$)

* Small m_{A} and large tan β are constrained

Other constrains on 2HDM-II

- Flavor data are competitive

* Small $\mathrm{m}_{\mathrm{A},} \mathrm{m}_{\mathrm{H}+}$ and large $\tan \beta$ are constrained

What can LC do?

What can LC do?

* Small mawl small $\tan \beta$
Cancellation mechanism is necessary for $b \rightarrow s \gamma$

What can LC do?
 * Small mawl small $\tan \beta$
 * Leptophilic Higgs
 Beat quark interaction !!
 CMS, $\sqrt{\mathrm{s}}=7 \mathrm{TeV}, \mathrm{L}=4.6 \mathrm{fb}^{-1} \quad$ CMS-HIG-11-029
 (Less LHC \& B phys. Constraints)

What can LC do?
 * Small mawl small $\tan \beta$
 * Leptophilic Higgs
 Beat quark interaction !!
 $\mathrm{m}_{\mathrm{A}}[\mathrm{GeV}]$ (Less LHC \& B phys. Constraints)

* Precision SM-like Higgs study

Small $\mathbf{m}_{\mathrm{A}} \mathbf{w} / \mathbf{s m a l l} \boldsymbol{\operatorname { t a n }} \beta$

$\boldsymbol{\operatorname { t a n } \beta} \beta$ @ LHC

Once Extra Higgs is discovered, then \cdots

For example,

$$
\mathrm{m}_{\mathrm{A}}=200 \mathrm{GeV} \rightarrow 3<\tan \beta<8
$$

by assuming MSSM(2HDM-II)

$\tan \beta$ in MSSM @ LC

$\mathrm{B}_{H}{ }^{\text {bb }}$ strongly depends on $\tan \beta$
$\begin{aligned} & \mathcal{B}_{H}^{b b} \simeq \frac{1}{1+\frac{0.0016}{0.012}+\frac{0.35+0.14}{0.012}}\left(\frac{1}{1+t_{\beta} s_{\beta}=\underline{\alpha} c_{\beta}-=\alpha}\right)^{2} \\ & e \sim 1 / \tan ^{4} \beta\end{aligned}$

$\boldsymbol{\operatorname { t a n }} \beta$ in 2HDM-II @ LC

$\boldsymbol{\operatorname { t a n }} \beta$ in 2HDM-II @ LC

$\tan \beta$ @ LC

*Precise measurement of $\sin (\beta-\alpha)$ makes BR prediction better in 2HDMs

\rightarrow Key observable for determining $\tan \beta$

$$
\sin ^{2}(\beta-\alpha)=1 \quad \sin ^{2}(\beta-\alpha)=0.96 \quad \sin ^{2}(\beta-\alpha)=0.80
$$

What can LC do?

* Small mA w/ small $\tan \beta$
* Leptophilic Higgs

Beat quark interaction !!
 (Less LHC \& B phys. Constraints)

* Precision SM-like Higgs study

Leptophilic 2HDM

FCNC problem of 2HDM

- Flavor changing neutral current (FCNC)

$$
\mathcal{L}=\bar{L}\left(Y_{\ell 1} \Phi_{1}+Y_{\ell 2} \Phi_{2}\right) \ell_{R}+\text { H.c. }
$$

Yukawa int. is not simultaneously diagonalized with mass matrix.
\rightarrow Generate tree level FCNC(, highly constrained by data)

- Adding extra $\mathbf{Z 2}$ sym. to avoid FCNC

$$
\begin{aligned}
& \left|\begin{array}{cc}
\Phi_{1} \rightarrow+\Phi_{1}, \quad L \rightarrow+L \\
\Phi_{2} \rightarrow-\Phi_{2}, \quad \ell_{R} \rightarrow-\ell_{R}
\end{array}\right| \\
& \mathcal{L}=\bar{L}\left(>+Y_{\ell 2} \Phi_{2}\right) \ell_{R}+\text { H.c. }
\end{aligned}
$$

4 types of Yukawa int.

ㅁ 4 independent combinations of $\mathbf{Z 2}$ charges

$$
\begin{array}{c||c|c|c|c|c|c}
& \Phi_{1} & \Phi_{2} & u_{R} & d_{R} & \ell_{R} & Q, L \\
\hline \text { Type-I } & + & - & - & - & - & + \\
\hline \text { Type-II } & + & - & - & + & + & + \\
\text { Type-X } & + & - & - & - & + & + \\
\text { Type-Y } & + & - & - & + & - & + \\
\square \text { Type- II: 2HDM structure in SUSY } \\
\text { L } \mathcal{L}=+\bar{Q} Y_{u} u_{R} H_{u}+\bar{Q} Y_{d} d_{R} H_{d}+\bar{L} Y_{\ell} \ell_{R} H_{d}+\text { H.c. }
\end{array}
$$

4 types of Yukawa int.

- 4 independent combinations of $\mathbf{Z 2}$ charges

	Φ_{1}	Φ_{2}	u_{R}	d_{R}	ℓ_{R}	Q, L
Type-I	+	-	-	-	-	+
Type-II	+	-	-	+	+	+
Type-X	+	-	-	-	+	+
Type-Y	+	-	-	+	-	+

םType-X: Leptophilic 2HDM for $\tan \beta>1$

$$
\mathcal{L}=+\bar{Q} Y_{u} u_{R} H_{q}+\bar{Q} Y_{d} d_{R} H_{q}+\bar{L} Y_{\ell} \ell_{R} H_{\ell}+\text { H.c. }
$$

Higgs doublets distinguish quarks and leptons!!

Higgs decays in 2HDMs

2HDM-X: Enhance leptonic Yukawa int. by $\tan \beta$

* More than 99% of H/A decay into $\tau \tau$
* Sizable $\mu \mu\left[\left(m_{\mu} / m_{\tau}\right)^{2}=1 / 300\right]$ mode

Flavor constraint on 2HDM-X

- No LHC results, and weaker flavor constraints

Mahmoudi, Stal (2009)

small $\mathrm{m}_{\mathrm{H}+}$ and
very large $\tan \beta$ are allowed

2HDM-X @ colliders

- DY production with leptonic decay modes

Multi-tau signature

4 τ : more than 99%
$2 \mu 2 \tau: \sigma(4 \tau) \times 1 / 300 \times 2!$

Cross sections are $\mathrm{O}(10-100) \mathrm{fb}$

2HDM-X @ LHC

- High multiplicity of tau jet reduces BG

τ ID is important

(1 or 3 prong, narrow cone, less QCD activity)

\rightarrow The excess can be seen!!
An example for $4 \tau \rightarrow 4^{\text {th }}$ $m_{A}=130 \mathrm{GeV}, \mathrm{m}_{\mathrm{H}}=170 \mathrm{GeV}$

$4 \tau_{h}$ event analysis	HA	$\phi^{0} H^{ \pm}$	VV	$t \bar{t}$	$V+$ jets	s/b	,
Pre-selection	324.	52.8	147.	797	5105.	0.1	. 7
$p_{T}^{\tau_{h}}>40 \mathrm{GeV}$	67.2	4.9	2.0	14.7	21.7	1.9	9.4
$E_{T}^{\prime}>30 \mathrm{GeV}$	48.6	4.4	1.1	7.6	10.4	2.8	9.3
$H_{T}^{\text {jet }}<50 \mathrm{GeV}$	34.2	3.4	0.5	0.8	8.2	3.9	8.7
$H_{T}^{\text {lep }}>350 \mathrm{GeV}$	27.6	2.7	0.4	0.5	3.1	7.5	9.3

But, mass reconstruction is difficult due to missing v's
\rightarrow "HA $\rightarrow 2 \mu 2 \tau$ " is reconstructable ($w /$ collinear approx.)
Huge lumi. is necessary due to $\mathcal{B}^{\mu \mu} / \mathcal{B}^{\tau \tau} \times 2!\simeq 0.7 \%$

2HDM-X @ LC

- 4τ momontum are fully reconstructable from taujets \& missing v's [We know initial 4 momenta @ LC (only p_{T} @ LHC)]

An example for $4 \tau \rightarrow 4^{\tau h}$ $m_{A}=130 \mathrm{GeV}, \mathrm{m}_{\mathrm{H}}=170 \mathrm{GeV}$ for $5 \sigma \sim 2 / f b$ @ LC

$4 \tau_{h}$ event analysis	$H A$	VV	$t \bar{t}$	$S_{\text {d }}\left(100 \mathrm{fb}^{-1}\right)$
Pre-selection	300.	10.6	1.2	38.
$0 \leq z_{1-4} \leq 1$	251.	6.2	0.1	38.
$\left(m_{Z}\right)_{\tau \tau} \pm 20 \mathrm{GeV}$	238.	1.8	0.	43.

Not only mass reconstruction, but also directly probe pair production!!

$\tan \beta$ in 2HDM-X

- BR measurement $\mathrm{w} / 4 \tau$ final states
- Width measurement of $\mathrm{H} / \mathrm{A}: \Gamma_{\mathrm{tot}}^{H, A} \simeq \frac{G_{F} m_{H, A} m_{\tau}^{2}}{4 \sqrt{2} \pi} \tan ^{2} \beta$

Wider parameter regions should be examined by LC

What can LC do?

* Small mA w/ small $\tan \beta$
* Leptophilic Higgs

Beat quark interaction !!
 (Less LHC \& B phys. Constraints)

* Precision SM-like Higgs study

Precision SM-like Higgs study

SM-like Higgs in SUSY

- SUSY Higgs sector is the most popular 2HDM
- Type-II Yukawa interaction w/ SUSY relation

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Phi_{u}: u, \\
\Phi_{d}: d, \ell
\end{array} \quad \sin (\beta-\alpha) \simeq 1-\frac{2 m_{Z}^{4}}{m_{A}^{4} \tan ^{2} \beta} \approx 1\right. \\
& \frac{g_{h b b}}{g_{h b b}^{\mathrm{SM}}}=\frac{g_{h \tau \tau}}{g_{h \tau \tau}^{\mathrm{SM}}}=\sin (\beta-\alpha)-\tan \beta \cos (\beta-\alpha) \simeq 1+\frac{2 m_{Z}^{2}}{m_{A}^{2}} \\
& \frac{g_{h t t}}{g_{h t t}^{\mathrm{SM}}}=\sin (\beta-\alpha)+\cot \beta \cos (\beta-\alpha) \simeq 1-\frac{2 m_{Z}^{2}}{m_{A}^{2} \tan ^{2} \beta}
\end{aligned}
$$

$m_{A} \gg m_{Z}$ $w / \tan \beta=5$

BG figure is taken from 1207.2516 by Peskin

SM-like Higgs in SUSY

- SUSY Higgs sector is the most popular 2HDM
- Type-II Yukawa interaction w/ SUSY relation

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Phi_{u}: u \\
\Phi_{d}: d, \ell
\end{array}\right. \\
& \frac{g_{h b b}}{g_{h b b}^{\mathrm{SM}}=\frac{g_{h \tau \tau}}{g_{h \tau \tau}^{\mathrm{SM}}}=\sin (\beta-\alpha)-\tan \beta \cos (\beta-\alpha) \simeq 1+\frac{2 m_{Z}^{2}}{m_{A}^{2}}}
\end{aligned}
$$

hbb deviation can probe m_{A} scale

$\mathrm{g}(\mathrm{hAA}) /\left.\mathrm{g}(\mathrm{hAA})\right|_{\mathrm{SM}^{-1}} \quad \mathrm{LHC}$

$m_{A} \gg m_{Z}$
$w / \tan \beta=5$

SM-like Higgs in 2HDMs

- 2HDM-II

$$
\sin (\beta-\alpha) \nsucceq 1-\frac{2 m_{Z}^{4}}{m_{A}^{4} \tan ^{2} \beta}
$$

- Type-II Yukawa interaction w/o SUSY relation

$$
\left\{\begin{array}{l}
\Phi_{u}: u \\
\Phi_{d}: d, \ell
\end{array}\right.
$$

* No m_{A} dependence $[\sin (\beta-\alpha)$ is determined by * $\cos (\beta-\alpha)$ can be sizable and positive

SM-like Higgs in 2HDMs

- 2HDM-II

$$
\sin (\beta-\alpha) \nsucceq 1-\frac{2 m_{Z}^{4}}{m_{A}^{4} \tan ^{2} \beta}
$$

- Type-II Yukawa interaction w/o SUSY relation

$$
\left\{\begin{array}{l}
\Phi_{u}: u \\
\Phi_{d}: d, \ell
\end{array}\right.
$$

$$
\begin{aligned}
\frac{g_{h b b}}{g_{h b b}^{\mathrm{SM}}}=\frac{g_{h \tau \tau}}{g_{h \tau \tau}^{\mathrm{SM}}} & =\sin (\beta-\alpha<-\tan \beta \cos (\beta-\alpha) \\
\frac{g_{h t t}}{g_{h t t}^{\mathrm{SM}}} & =\sin (\beta-\alpha)+\cot \beta \cos (\beta-\alpha)
\end{aligned}
$$

$\sin (\beta-\alpha)+\boldsymbol{h f f}$ deviations ($\mathbf{w} / \mathbf{o} \mathbf{m}_{\boldsymbol{A}}$) \rightarrow detemination of $\tan \beta$

SM-like Higgs in 2HDMs

- 2HDM-II

$$
\sin (\beta-\alpha) \nsim 1-\frac{2 m_{Z}^{4}}{m_{A}^{4} \tan ^{2} \beta}
$$

- Type-II Yukawa interaction w/o SUSY relation

$$
\left\{\begin{array}{l}
\Phi_{u}: u \\
\Phi_{d}: d, \ell
\end{array}\right.
$$

$$
\begin{aligned}
\frac{g_{h b b}}{g_{h b b}^{\mathrm{SM}}}=\frac{g_{h \tau \tau}}{g_{h \tau \tau}^{\mathrm{SM}}} & =\sin (\beta-\alpha-\tan \beta \cos (\beta-\alpha) \\
\frac{g_{h t t}}{g_{h t t}^{\mathrm{SM}}} & =\sin (\beta-\alpha)+\cot \beta \cos (\beta-\alpha)
\end{aligned}
$$

$\sin (\beta-\alpha)+\boldsymbol{h f f}$ deviations ($\mathbf{w} / \mathbf{o} \mathbf{m}_{A}$)

\rightarrow discrimination of types of Yukawa
$\mathrm{g}_{0.4}(\mathrm{hAA}) /\left.\mathrm{g}(\mathrm{hAA})\right|_{\mathrm{SM}^{-1}} \quad \mathrm{LHC}$

$g(h A A) /\left.g(h A A)\right|_{S M}-1 \quad L H C$

tan β in SM-like Higgs decay

- Assume precise measurement of $\mathrm{BR}(\mathrm{h} \rightarrow \mathrm{bb})$

$$
\mathcal{B}_{h}^{b b} \simeq \frac{1}{1+\frac{0.052}{0.50}+\frac{0.26+0.031}{0.50}(\frac{1}{1-\overbrace{0}^{* *+t}+\sqrt[2]{0.04 / 0.96}})^{2}}
$$

$\Delta \mathrm{B} / \mathrm{B}=0.03(0.01)$ is chosen.
[$250 / \mathrm{fb}$ @ $\mathrm{E}_{\mathrm{cm}}=250 \mathrm{GeV}$](See, talk by Dr. Ono)
Kanemura, KT, Yokoya, Yagyu

Type-II

tan β in SM-like Higgs decay

- Assume precise measurement of $\mathrm{BR}(\mathrm{h} \rightarrow \mathrm{bb})$

$$
\mathcal{B}_{h}^{b b} \simeq \frac{1}{1+\frac{0.052}{0.50}+\frac{0.26+0.031}{0.50}(\frac{1}{1-\overbrace{0}^{* *+t}+\sqrt[2]{0.04 / 0.96}})^{2}}
$$

$\Delta \mathrm{B} / \mathrm{B}=0.03(0.01)$ is chosen.
[$250 / \mathrm{fb} @ \mathrm{E}_{\mathrm{cm}}=250 \mathrm{GeV}$](See, talk by Dr. Ono)
Kanemura, KT, Yokoya, Yagyu

Type-X

Unitarity bound

- Potential largest eigenvalue:

Kanemura et,al, (1993)

$$
a^{ \pm}=-\frac{1}{32 \pi}\left[3\left(\lambda_{1}+\lambda_{2}\right) \pm \sqrt{9\left(\lambda_{1}-\lambda_{2}\right)^{2}+4\left(2 \lambda_{3}+\lambda_{4}\right)^{2}}\right]
$$

There are implicit upper mass bounds [a deviation of $\sin (\beta-\alpha)$ requires non-decoupling]

Summary

- Extra Higgs bosons

> Direct search

* SUSY/2HDM-II Higgs has been searched (small $\mathrm{m}_{\mathrm{A}} \mathrm{w} / 3<\tan \beta<8$ @ LC)
* Leptophilic Higgs
(4τ signature @ LHC)
(4τ signature \& $\tan \beta$ @ LC)
> Indirect search
* Precision SM-like Higgs study
$(\tan \beta$ from $\mathrm{h} \rightarrow \mathrm{bb}$ @ LC) (discriminate types of Yukawa in 2HDMs)

Summary

- Extra Higgs bosons
> Direct search
* SUSY/2HDM-II Higgs has been searched (small $\mathrm{m}_{\mathrm{A}} \mathrm{w} / 3<\tan \beta<8$ @ LC)
* Leptophilic Higgs
(4 τ signature @ LHC)
(4τ signature \& tan β @ LC)
> Indirect search
* Precision SM-like Higgs study
$(\tan \beta$ from $\mathrm{h} \rightarrow \mathrm{bb}$ @ LC)
(discriminate types of Yukawa in 2HDMs)
LC can probe extra Higgs bosons, directly and indirectly.

Back up slides

- Type-II Higgs interactions
- SM-like Higgs h and additional Higgs H w/o $\sin (\beta-\alpha)=1$

$$
\begin{aligned}
& g_{h b b}=-\frac{\sin \alpha}{\cos \beta}=\sin (\beta-\alpha)-\tan \beta \cos (\beta-\alpha) \\
& g_{h t t}=\frac{\cos \alpha}{\sin \beta}=\sin (\beta-\alpha)+\cot \beta \cos (\beta-\alpha)
\end{aligned}
$$

$$
\tan \beta \cos (\beta-\alpha)=\left\{\begin{array}{lll}
\pm 0.2 \tan \beta & \text { for } & \sin (\beta-\alpha)=\sqrt{0.96} \\
\pm 0.45 \tan \beta & \text { for } & \sin (\beta-\alpha)=\sqrt{0.80}
\end{array}\right.
$$

The factor can be much larger than unity

SM-like?

- SM-like gauge-gauge-Higgs coupling is favored

Production	Decay	LO SM	
VH	$H \rightarrow b b$	$\sim \frac{C_{V}^{2} \times C_{F}^{2}}{C_{F}^{2}}$	$\sim C_{V}^{2}$
ttH	$H \rightarrow b b$	$\sim \frac{C_{F}^{2} \times C_{F}^{2}}{C_{F}^{2}}$	$\sim C_{F}^{2}$
VBF/VH	$H \rightarrow \tau \tau$	$\sim \frac{C_{V}^{2} \times C_{F}^{2}}{C_{F}^{2}}$	$\sim C_{V}^{2}$
ggH	$H \rightarrow \tau \tau$	$\sim \frac{C_{F}^{2} \times C_{F}^{2}}{C_{F}^{2}}$	$\sim C_{F}^{2}$
ggH	$H \rightarrow Z Z$	$\sim \frac{C_{F}^{2} \times C_{V}^{2}}{C_{F}^{2}}$	$\sim C_{V}^{2}$
ggH	$H \rightarrow W W$	$\sim \frac{C_{F}^{2} \times C_{V}^{2}}{C_{F}^{2}}$	$\sim C_{V}^{2}$
VBF/VH	$H \rightarrow W W$	$\sim \frac{C_{V}^{2} \times C_{V}^{2}}{C_{F}^{2}}$	$\sim C_{V}^{4} / C_{F}^{2}$
ggH	$H \rightarrow \gamma \gamma$	$\sim \frac{C_{F}^{2} \times\left(8.6 C_{V}-1.8 C_{F}\right)^{2}}{C_{F}^{2}}$	$\sim C_{V}^{2}$
VBF	$H \rightarrow \gamma \gamma$	$\sim \frac{C_{V}^{2} \times\left(8.6 C_{V}-1.8 C_{F}\right)^{2}}{C_{F}^{2}}$	$\sim C_{V}^{4} / C_{F}^{2}$

$\sin (\beta-\alpha)$ can be different from unity

$\tan \beta$ @ LC

- Gunion et.al. (2003) Width measurement LHC $\Gamma_{\text {tot }}^{H, A} \simeq N_{C} \frac{G_{F} m_{H, A} m_{b}^{2}}{4 \sqrt{2} \pi}$ t

$$
\text { Determination of } \tan \beta: \sqrt{\mathrm{s}}=500 \mathrm{GeV}, \mathrm{~L}=2000 \mathrm{fb}^{-1}
$$

$\tan \beta$ @ LC

- Gunion et.al. (2003)

Width measurement)

Determination of $\tan \beta: \sqrt{s}=500 \mathrm{GeV}, \mathrm{L}=2000 \mathrm{fb}^{-1}$ $\Gamma_{\mathrm{tot}}^{H, A} \simeq N_{C} \frac{{ }_{F}{ }^{2} \pi}{4 \sqrt{2}}$

$\boldsymbol{\operatorname { t a n }} \beta$ @ LC

- Gunion et.al. (2003)
bbH/bbA production $\sigma \propto \tan ^{2} \beta$

Less sensitivity due to less cross section
$\tan \beta$
(LHC would have better sensitivity)

$\boldsymbol{\operatorname { t a n }} \beta$ @ LC

bbH/bbA production $\sigma \propto \tan ^{2} \beta$

Less sensitivity due to less cross section (LHC would have better sensitivity)

Gauge coupling in MSSM

Djouadi (2008)

Yukawa coupling in MSSM

Djouadi (2008)

LHC14

Event analysis details

-MadGraph5: event generation, calculate (diff.) σ
-PYTHIA: hadronization (quark, $\tau \rightarrow$ hadron)
w/ TAUOLA (tau polarization)
-FastJet: (construct jets from hadrons) jet is defined by anti-kT w/ R<0.4

\rightarrow Detector simulation (construct kinematical variables such as invariant mass, etc...)

Unitarity bound

- $\tan \beta$ enhancement in λ couplings

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{v^{2} \cos ^{2} \beta}\left(-M^{2} \sin ^{2} \beta+m_{H}^{2} \cos ^{2} \alpha+m_{h}^{2} \sin ^{2} \alpha\right) \\
& \lambda_{2}=\frac{1}{v^{2} \sin ^{2} \beta}\left(-M^{2} \cos ^{2} \beta+m_{H}^{2} \sin ^{2} \alpha+m_{h}^{2} \cos ^{2} \alpha\right) \\
& \lambda_{3}=\frac{1}{v^{2}}\left[-M^{2}+\left(m_{H}^{2}-m_{h}^{2}\right) \frac{\sin 2 \alpha}{\sin 2 \beta}+2 m_{H^{+}}^{2}\right]
\end{aligned}
$$

nearly SM-like ($\beta-\alpha=\pi / 2-\delta$), and $M=M_{H}=M_{H+}$

$$
\begin{aligned}
& \lambda_{1} \rightarrow+\frac{m_{h}^{2}}{v^{2}}-\frac{2\left(M^{2}-m_{h}^{2}\right) t_{\beta}}{v^{2}} \delta-\frac{\left(M^{2}-m_{h}^{2}\right) t_{\beta}^{2}}{v^{2}} \delta^{2} \\
& \lambda_{2} \rightarrow+\frac{m_{h}^{2}}{v^{2}}+\frac{2\left(M^{2}-m_{h}^{2}\right) / t_{\beta}}{v^{2}} \delta+\frac{\left(M^{2}-m_{h}^{2}\right) / t_{\beta}^{2}}{v^{2}} \delta^{2} \\
& \lambda_{3} \rightarrow+\frac{m_{h}^{2}}{v^{2}}+\frac{2\left(M^{2}-m_{h}^{2}\right)}{v^{2}} \delta+\frac{\left(M^{2}-m_{h}^{2}\right)}{v^{2}} \delta^{2}
\end{aligned}
$$

Leptophilic Higgs in 2HDM

aTiny neutrino mass

ex. 3-loop radiative seesaw w/ light H+/ by Aoki et al. PRL102:051805,2009

a μ magnetic moment light $\mathbf{A}(C P$ odd) w/ large tanB by Cao et al. PRD80:071701,2009

- e^{+}eXCess @ pamela, fermi scalars as a messenger to DM by Goh et al. JHEP 0905:097,2009

$$
\mathrm{DM} \text { DM } \rightarrow \Phi^{\prime} \Phi^{\prime} \rightarrow \tau \tau \tau \tau
$$

A model for tiny neutrino masses

- Gauged Type-III seesaw

$$
\mathcal{L}=+\bar{Q} Y_{u} u_{R} \widetilde{H}_{q}+\bar{Q} Y_{d} d_{R} H_{q}+\bar{L} Y_{\ell} \ell_{R} H_{\ell}+\text { H.c. }
$$

[B-L like] U(1) extension [in Type-I seesaw]

- Anomaly cancellation requires 2HDM-X

Charge assignment:
$(u, d)_{L} \sim\left(3,2,1 / 6 ; n_{1}\right), \quad u_{R} \sim\left(3,1,2 / 3 ; n_{2}\right), \quad d_{R} \sim\left(3,1,-1 / 3 ; n_{3}\right)$,
$(\nu, e)_{L} \sim\left(1,2,-1 / 2 ; n_{4}\right), \quad e_{R} \sim\left(1,1,-1 ; n_{5}\right), \quad \Sigma_{R} \sim\left(1,3,0 ; n_{6}\right)$.
$\mathbf{U}(\mathbf{1}) \mathbf{x}$ scalar: $\quad \chi^{0} \sim\left(1,1,0 ;-2 n_{6}\right)$

A model for tiny neutrino masses

■ Gauged Type-III seesaw

$$
\mathcal{L}=+\bar{Q} Y_{u} u_{R} \widetilde{H}_{q}+\bar{Q} Y_{d} d_{R} H_{q}+\bar{L} Y_{\ell} \ell_{R} H_{\ell}+\text { H.c. }
$$

[B-L like] U(1) extension [in Type-I seesaw]

- Anomaly cancellation requires 2HDM-X

Axial-vector anomaly:

$$
\begin{aligned}
{[S U(3)]^{2} U(1)_{X}: } & +2 n_{1}-n_{2}-n_{3}=0 \\
{[S U(2)]^{2} U(1)_{X}: } & +3\left(\frac{1}{2}\right) n_{1}+\left(\frac{1}{2}\right) n_{4}-(2) n_{6}=0 \\
{\left[U(1)_{Y}\right]^{2} U(1)_{X}: } & +6\left(\frac{1}{6}\right)^{2} n_{1}-3\left(\frac{2}{3}\right)^{2} n_{2}-3\left(-\frac{1}{3}\right)^{2} n_{3}+2\left(-\frac{1}{2}\right)^{2} n_{4}-(-1)^{2} n_{5}=0 \\
U(1)_{Y}\left[U(1)_{X}\right]^{2}: & +6\left(\frac{1}{6}\right) n_{1}^{2}-3\left(\frac{2}{3}\right) n_{2}^{2}-3\left(-\frac{1}{3}\right) n_{3}^{2}+2\left(-\frac{1}{2}\right) n_{4}^{2}-(-1) n_{5}^{2}=0 \\
{\left[U(1)_{X}\right]^{3}: } & +6 n_{1}^{3}-3 n_{2}^{3}-3 n_{3}^{3}+2 n_{4}^{3}-n_{5}^{3}-3 n_{6}^{3}=0
\end{aligned}
$$

gravitational anomaly:

$$
+6 n_{1}-3 n_{2}-3 n_{3}+2 n_{4}-n_{5}-3 n_{6}=0
$$

Unique solution exists!!

A model for tiny neutrino masses

- Gauged Type-III seesaw
$\mathcal{L}=+\bar{Q} Y_{u} u_{R} \widetilde{H}_{q}+\bar{Q} Y_{d} d_{R} H_{q}+\bar{L} Y_{\ell} \ell_{R} H_{\ell}+$ H.c.
[B-L like] U(1) extension [in Type-I seesaw]

- Anomaly cancellation requires $2 \mathrm{HDM}-\mathrm{X}$

 possible Yukawa int:$$
\begin{array}{cc}
n_{1}-n_{3}=n_{2}-n_{1}=n_{6}-n_{4}=\frac{3}{4}\left(n_{1}-n_{4}\right), & n_{4}-n_{5}=\frac{1}{4}\left(9 n_{1}-n_{4}\right), \\
H_{q} & H_{\ell}
\end{array}
$$

2HDM-X can also be a low energy effective theory

