Extra Higgs bosons and tanß

PRESENTATION

Koji TSUMUTA (Nagoya U.)

The Workshop of Future Linear Colliders (LCWS 2012), Arlington, Texas, USA 22-26/10/2012

Outline:

- Extended Higgs sector
- 2HDMs @ ILC
- Summary

Is it the end of story ?

We found 125 GeV object !!

It is not the end of story

- ✤ Is it scalar ?
- ✤ Is it elementary ?
- ✤ Is it SM one?
- Hierarchy problem
- DM
- Neutrino mass
- ✤ Baryogenesis
- There is no reason to consider the minimal Higgs sector (SM)

Guideline for Ext. Higgs sector

- * Custodial symmetry: $\rho = \frac{\sum_{\alpha} (I_{\alpha}(I_{\alpha}+1) Y_{\alpha}^2) v_{\alpha}^2}{\sum_{\beta} 2Y_{\beta}^2 v_{\beta}^2}$ Veltman (1977)
 - * singlet/doublet VEV (or inert multiplets) preserves ρ =1

- Minimal extension
- ✤ Mix w/ Higgs
- No contrib. to EWSB

Neutrino mass generation

- DM candidate
 DM contrib. to EWSB
 Minimal SM
 (Main) contrib. to EWSB
 Yukawa int.
 (SUSY extension)
- ${\ensuremath{\, \bullet }}$ higher rep. $(d\geq 3)$ has less contributions to EWSB

triplet, quadruplet, quintuplet, ...

No direct interaction w/ SM particles

 \div

Disclaimer

I could not cover all extensions

Focus on 2HDM (two Higgs doublet model)

* singlet/doublet VEV (or inert multiplets) preserves ρ =1

Minimal SM
(Main) contrib. to EWSB
Yukawa int.
(SUSY extension)

* higher rep. $(d \ge 3)$ has less contributions to EWSB triplet, quadruplet, quintuplet, \cdots

2HDM (two-Higgs-doublet model)

□ 2HDM is an effective theory

$$\Phi_1 = \begin{pmatrix} \omega_1^+ \\ \frac{v_1 + h_1 + i z_1}{\sqrt{2}} \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \omega_2^+ \\ \frac{v_2 + h_2 + i z_2}{\sqrt{2}} \end{pmatrix}$$

□ Softly Z₂ broken 2HDM

$$V_{2\text{HDM}} = m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 - \left(m_3^2 \Phi_1^{\dagger} \Phi_2 + \text{H.c.}\right) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + \text{H.c.}\right]$$

 $\Box \ 5 \ Physical \ Higgs \ bosons \ (assume \ CP \ inv.) \qquad m_3^2, \lambda_5 \ real$ $\binom{h_1}{h_2} = R(\alpha) \binom{H}{h}, \ \binom{z_1}{z_2} = R(\beta) \binom{z}{A}, \ \binom{\omega_1^+}{\omega_2^+} = R(\beta) \binom{\omega^+}{H^+}, \ R(\theta) = \binom{\cos \theta \ -\sin \theta}{\sin \theta \ \cos \theta}$

2HDM

□ Mass spectrum (in the nearly SM-like limit)

$$M^2 \equiv m_3^2 / (\sin\beta\cos\beta)$$

$$m_h^2 \sim 2 \lambda v^2$$
 ~ 125 GeV

(Only important for scalar interactions, eg., hH⁺H⁻ coupling in h \rightarrow yy)

M² characterizes non-decoupling effects

 $m_{H,A,H^\pm}^2 \sim M^2 + \frac{\lambda v^2}{2} ~~\text{Not yet observed}$

 \Box gauge-gauge-Higgs coupling: $sin(\beta - \alpha)(\sim 1)$

$$h = i g_V M_V \sin(\beta - \alpha) g_{\mu\nu}$$

 \Box tan β (=v₂/v₁) is a free parameter

Is it SM-like?

Is it SM-like?

125 GeV boson

 $sin(\beta - \alpha)$ can be different from unity (Of course, it is too early to say something)

SUSY Higgs search

SUSY Higgs sector is the most popular 2HDM

Type-II Yukawa interaction w/ SUSY relation $\sin(\beta - \alpha) \simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$ $\begin{cases} \Phi_u: u, \\ \Phi_d: d, \ell \end{cases}$ $\frac{g_{htt}}{g_{htt}^{\rm SM}} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha) \simeq 1 - \frac{2m_Z^2}{m_A^2\tan^2\beta}$ $\frac{g_{hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{\rm SM}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha) \simeq 1 + \frac{2m_Z^2}{m^2}$ $\frac{g_{Htt}}{g_{htt}^{\rm SM}} = \cos(\beta - \alpha) - \cot\beta\sin(\beta - \alpha) \simeq -\frac{1}{\tan\beta}$ $\frac{g_{Hbb}}{g_{hbb}^{SM}} = \frac{g_{H\tau\tau}}{g_{h\tau\tau}^{SM}} = \cos(\beta - \alpha) + \tan\beta\sin(\beta - \alpha) \simeq \tan\beta$ $u \quad d, \ell$

Yukawa int. for H, A, H⁺ is suppressed/enhánced for large tanβ

LCWS2012

SUSY Higgs production @ LHC

Djouadi (2008)

SUSY Higgs search @ LHC

□ LHC results ($H/A \rightarrow \tau \tau$)

* Small m_A and large tan β are constrained

LCWS2012

Other constrains on 2HDM-II

• Small m_{A_1} $m_{H_{+}}$ and large tan β are constrained

LCWS2012

What can LC do?

LCWS2012

Precision SM-like Higgs study

Small m_A w/ small tanβ

Once Extra Higgs is discovered, then…

by assuming MSSM(2HDM-II)

tanβ in MSSM @ LC

Gunion et.al. (2003)

LCWS2012

tanβ in 2HDM-II @ LC

LCWS2012

tanβ in 2HDM-II @ LC

LCWS2012

*Precise measurement of $sin(\beta - \alpha)$ makes BR prediction better in 2HDMs

 \rightarrow Key observable for determining tan β

LCWS2012

What can LC do?

Small mA w/ small tanβ

* Leptophilic Higgs

Beat quark interaction !! (Less LHC & B phys. Constraints)

* Precision SM-like Higgs study

CMS. $\sqrt{s} = 7$ TeV. L = 4.6 fb⁻¹

Observed

50 tanβ 45

500

CMS-HIG-11-029

Leptophilic 2HDM

FCNC problem of 2HDM

Flavor changing neutral current (FCNC)

$$\mathcal{L} = \overline{L} \left(Y_{\ell 1} \Phi_1 + Y_{\ell 2} \Phi_2 \right) \ell_R + \text{H.c.}$$

Yukawa int. is not simultaneously diagonalized with mass matrix. → Generate **tree level FCNC**(, highly constrained by data)

□ Adding extra Z2 sym. to avoid FCNC

$$\begin{array}{ll} \Phi_1 \rightarrow + \Phi_1, & L \rightarrow + L \\ \\ \Phi_2 \rightarrow - \Phi_2, & \ell_R \rightarrow - \ell_R \end{array}$$

$$\mathcal{L} = \overline{L} \left(\mathbf{\mathcal{H}} + Y_{\ell 2} \Phi_2 \right) \ell_R + \text{H.c.}$$

4 types of Yukawa int.

4 independent combinations of Z2 charges

Type-II: 2HDM structure in SUSY

$$\mathcal{L} = +\overline{Q}Y_u u_R \frac{H_u}{H_u} + \overline{Q}Y_d d_R \frac{H_d}{H_d} + \overline{L}Y_\ell \ell_R \frac{H_d}{H_d} + \text{H.c.}$$

LCWS2012

4 types of Yukawa int.

4 independent combinations of Z2 charges

Type-X: Leptophilic 2HDM for tan β >1

$$\mathcal{L} = +\overline{Q}Y_u u_R H_q + \overline{Q}Y_d d_R H_q + \overline{L}Y_\ell \ell_R H_\ell + \text{H.c.}$$

Higgs doublets distinguish quarks and leptons!!

LCWS2012

Higgs decays in 2HDMs

Aoki, Kanemura, KT, Yagyu (2009)

2HDM-X: Enhance leptonic Yukawa int. by $tan\beta$

* More than 99% of H/A decay into $\tau\tau$

* Sizable $\mu\mu$ [(m_{μ}/m_{τ})²=1/300] mode

Flavor constraint on 2HDM-X

No LHC results, and weaker flavor constraints

Mahmoudi, Stal (2009)

small m_{H+} and very large tanβ are allowed

2HDM-X @ colliders

Kanemura, KT, Yokoya (2012)

DY production with leptonic decay modes

Multi-tau signature

4τ: more than 99% 2μ2τ: σ(4τ) x 1/300 x 2!

Cross sections are O(10-100)fb

2HDM-X @ LHC

 $\pi^{\text{collimation}}$ $\pi^{0}\pi^{0}$ π^{\pm}

p tracks

High multiplicity of tau jet reduces BG Tracking isolati

τ ID is important

(1 or 3 prong, narrow cone, less QCD activity)

\rightarrow The excess can be seen!!

An example for $4\tau \rightarrow 4^{\tau h}$ m_{Δ} =130GeV, m_{H} =170GeV

$4\tau_h$ event analysis	HA	$\phi^0 H^\pm$	VV	$t\bar{t}$	V+jets	s/b	S	(100 fb ⁻	¹)
Pre-selection	324.	52.8	147.	797.	5105.	0.1		4.7	
$p_T^{\tau_h} > 40 \text{ GeV}$	67.2	4.9	2.0	14.7	21.7	1.9		9.4	
$\not\!$	48.6	4.4	1.1	7.6	10.4	2.8		9.3	
$H_T^{\rm jet} < 50~{ m GeV}$	34.2	3.4	0.5	0.8	8.2	3.9		8.7	
$H_T^{ m lep} > 350~{ m GeV}$	27.6	2.7	0.4	0.5	3.1	7.5		9.3	

But, mass reconstruction is difficult due to missing v's

 \rightarrow "HA $\rightarrow 2\mu 2\tau$ " is reconstructable (w/ collinear approx.) Huge lumi, is necessary due to $\mathcal{B}^{\mu\mu}/\mathcal{B}^{\tau\tau} \times 2! \simeq 0.7\%$

2HDM-X @ LC

4τ momontum are fully reconstructable from taujets & missing v's [We know initial 4 momenta @ LC (only p_T @ LHC)]

An example for $4\tau \rightarrow 4^{\tau h}$	$4\tau_h$ event analysis	HA	VV	$t\bar{t}$	$S (100 \text{ fb}^{-1})$
m _^ =130GeV, m _⊔ =170GeV	Pre-selection	300.	10.6	1.2	38.
	$0 \le z_{1-4} \le 1$	251.	6.2	0.1	38.
for 5 σ ~ 2/fb @ LC	$(m_Z)_{\tau\tau} \pm 20 \text{ GeV}$	238.	1.8	0.	43.

Not only mass reconstruction, but also directly probe pair production!!

tan_β in 2HDM-X

Kanemura, KT, Yokoya, Yagyu

What can LC do?

Small mA w/ small tanβ

* Leptophilic Higgs

Beat quark interaction !! (Less LHC & B phys. Constraints)

* Precision SM-like Higgs study

Precision SM-like Higgs study

SM-like Higgs in SUSY

SUSY Higgs sector is the most popular 2HDM

Type-II Yukawa interaction w/ SUSY relation

$$\begin{cases} \Phi_u : u, & \sin(\beta - \alpha) \simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta} \approx 1 \\ \Phi_d : d, \ell & & \swarrow \end{cases}$$

$$\frac{g_{hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{\rm SM}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha) \simeq 1 + \frac{2m_Z^2}{m_A^2}$$
$$\frac{g_{htt}}{g_{htt}^{\rm SM}} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha) \simeq 1 - \frac{2m_Z^2}{m_A^2\tan^2\beta}$$

SM-like Higgs in SUSY

SUSY Higgs sector is the most popular 2HDM

Type-II Yukawa interaction w/ SUSY relation

$$egin{cases} \Phi_u: u,\ \Phi_d: d,\ell \end{cases}$$

$$\frac{g_{hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{\rm SM}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha) \simeq 1 + \frac{2m_Z^2}{m_A^2}$$

hbb deviation can probe m_A scale

SM-like Higgs in 2HDMs

2HDM-II

 $\sin(\beta - \alpha) \not\simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$

 $\frac{g_{hbb}}{g_{hbb}^{\rm SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{\rm SM}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)$

 $\frac{g_{htt}}{g_{htt}^{\rm SM}} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)$

Type-II Yukawa interaction w/o SUSY relation

* No m_A dependence [sin(β-α) is determined by $(1, 2, 5)^{2^{-1}}$] * cos(β-α) can be sizable and positive

 $\begin{cases} \Phi_u : u, \\ \Phi_d : d, \ell \end{cases}$

SM-like Higgs in 2HDMs

2HDM-II

$$\sin(\beta - \alpha) \not\simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$$

Type-II Yukawa interaction w/o SUSY relation

 $\begin{cases} \Phi_{u} : u, & \frac{g_{hbb}}{g_{hbb}^{SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{SM}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha) \\ \Phi_{d} : d, \ell & \frac{g_{htt}}{g_{htt}^{SM}} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha) \end{cases}$

sin(β - α) + hff deviations (w/o m_A) \rightarrow detemination of tan β

SM-like Higgs in 2HDMs

2HDM-II

$$\sin(\beta - \alpha) \not\simeq 1 - \frac{2m_Z^4}{m_A^4 \tan^2 \beta}$$

Type-II Yukawa interaction w/o SUSY relation

 $\begin{cases} \Phi_u : u, & \frac{g_{hbb}}{g_{hbb}^{SM}} = \frac{g_{h\tau\tau}}{g_{h\tau\tau}^{SM}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha) \\ \Phi_d : d, \ell & \frac{g_{htt}}{g_{htt}^{SM}} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha) \end{cases}$

sin(β - α) + hff deviations (w/o m_A) \rightarrow discrimination of types of Yukawa

tanβ in SM-like Higgs decay

■ Assume precise measurement of BR(h→bb)

tanβ in SM-like Higgs decay

■ Assume precise measurement of BR(h→bb)

Unitarity bound

Potential largest eigenvalue:

$$a^{\pm} = -\frac{1}{32\pi} \left[3(\lambda_1 + \lambda_2) \pm \sqrt{9(\lambda_1 - \lambda_2)^2 + 4(2\lambda_3 + \lambda_4)^2} \right]$$

There are implicit upper mass bounds

[a deviation of $sin(\beta - \alpha)$ requires non-decoupling]

Summary

Extra Higgs bosons

Direct search

SUSY/2HDM-II Higgs has been searched (small m_A w/ 3 < tanβ < 8 @ LC)</p>

Leptophilic Higgs

(4 τ signature @ LHC) (4 τ signature & tan β @ LC)

Indirect search

Precision SM-like Higgs study

(tanβ from h \rightarrow bb @ LC) (discriminate types of Yukawa in 2HDMs)

Summary

Extra Higgs bosons

Direct search

SUSY/2HDM-II Higgs has been searched (small m_A w/ 3 < tanβ < 8 @ LC)</p>

Leptophilic Higgs

(4 τ signature @ LHC) (4 τ signature & tan β @ LC)

Indirect search

Precision SM-like Higgs study

(tanβ from h \rightarrow bb @ LC) (discriminate types of Yukawa in 2HDMs)

LC can probe extra Higgs bosons, directly and indirectly.

Back up slides

Type-II Higgs interactions

D SM-like Higgs h and additional Higgs H w/o sin(β - α)=1

$$g_{hbb} = -\frac{\sin\alpha}{\cos\beta} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)$$
$$g_{htt} = \frac{\cos\alpha}{\sin\beta} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)$$

 $\tan\beta\cos(\beta-\alpha) = \begin{cases} \pm 0.2\tan\beta & \text{for} \quad \sin(\beta-\alpha) = \sqrt{0.96} \\ \pm 0.45\tan\beta & \text{for} \quad \sin(\beta-\alpha) = \sqrt{0.80} \end{cases}$

The factor can be <u>much larger</u> than unity

SM-like?

SM-like gauge-gauge-Higgs coupling is favored

Koji TSUMURA (Nagoya U.)

LCWS2012

ATLAS-CONF-2012-127

Gunion et.al. (2003)

Width measurement is sensitive for high $tan\beta$

LCWS2012

Gunion et.al. (2003)

Width measurement is sensitive for high $tan\beta$

LCWS2012

Gunion et.al. (2003)

(LHC would have better sensitivity)

$tan \beta @ LC$

Gunion et.al. (2003)

Gauge coupling in MSSM

Djouadi (2008)

Yukawa coupling in MSSM

LCWS2012

Event analysis details

-MadGraph5: event generation, calculate (diff.) $\boldsymbol{\sigma}$

-PYTHIA: hadronization (quark, $\tau \rightarrow$ hadron) w/ TAUOLA (tau polarization)

-FastJet: (construct jets from hadrons) jet is defined by anti-kT w/ R<0.4

→ Detector simulation (construct kinematical variables such as invariant mass, etc...)

LHC14

Unitarity bound

Kanemura, KT, Yokoya, Yagyu

\square tan β enhancement in λ couplings

$$\lambda_{1} = \frac{1}{v^{2} \cos^{2} \beta} \left(-M^{2} \sin^{2} \beta + m_{H}^{2} \cos^{2} \alpha + m_{h}^{2} \sin^{2} \alpha \right)$$
$$\lambda_{2} = \frac{1}{v^{2} \sin^{2} \beta} \left(-M^{2} \cos^{2} \beta + m_{H}^{2} \sin^{2} \alpha + m_{h}^{2} \cos^{2} \alpha \right)$$
$$\lambda_{3} = \frac{1}{v^{2}} \left[-M^{2} + (m_{H}^{2} - m_{h}^{2}) \frac{\sin 2\alpha}{\sin 2\beta} + 2m_{H^{+}}^{2} \right]$$

nearly SM-like (β - α = $\pi/2-\delta$), and M=M_H=M_{H+}

$$\lambda_{1} \to +\frac{m_{h}^{2}}{v^{2}} - \frac{2(M^{2} - m_{h}^{2})t_{\beta}}{v^{2}}\delta - \frac{(M^{2} - m_{h}^{2})t_{\beta}^{2}}{v^{2}}\delta^{2}$$
$$\lambda_{2} \to +\frac{m_{h}^{2}}{v^{2}} + \frac{2(M^{2} - m_{h}^{2})/t_{\beta}}{v^{2}}\delta + \frac{(M^{2} - m_{h}^{2})/t_{\beta}^{2}}{v^{2}}\delta^{2}$$
$$\lambda_{3} \to +\frac{m_{h}^{2}}{v^{2}} + \frac{2(M^{2} - m_{h}^{2})}{v^{2}}\delta + \frac{(M^{2} - m_{h}^{2})}{v^{2}}\delta^{2}$$

Only λ_1 diverges @ large tan β

Leptophilic Higgs in 2HDM

A model for tiny neutrino masses

Anomaly cancellation requires 2HDM-X Charge assignment:

 $(u, d)_L \sim (3, 2, 1/6; n_1), \quad u_R \sim (3, 1, 2/3; n_2), \quad d_R \sim (3, 1, -1/3; n_3),$ $(\nu, e)_L \sim (1, 2, -1/2; n_4), \quad e_R \sim (1, 1, -1; n_5), \quad \Sigma_R \sim (1, 3, 0; n_6).$ U(1)x scalar: $\chi^0 \sim (1, 1, 0; -2n_6)$

A model for tiny neutrino masses

 $\mathcal{L} = +\overline{Q}Y_u u_R \widetilde{H}_q + \overline{Q}Y_d d_R H_q + \overline{L}Y_\ell \ell_R H_\ell + \text{H.c.}$

[B-L like] U(1) extension [in Type-I seesaw]

Anomaly cancellation requires 2HDM-X

Axial-vector anomaly:

$$\begin{split} [SU(3)]^2 U(1)_X : &+ 2n_1 - n_2 - n_3 = 0\\ [SU(2)]^2 U(1)_X : &+ 3(\frac{1}{2})n_1 + (\frac{1}{2})n_4 - (2)n_6 = 0\\ [U(1)_Y]^2 U(1)_X : &+ 6(\frac{1}{6})^2 n_1 - 3(\frac{2}{3})^2 n_2 - 3(-\frac{1}{3})^2 n_3 + 2(-\frac{1}{2})^2 n_4 - (-1)^2 n_5 = 0\\ U(1)_Y [U(1)_X]^2 : &+ 6(\frac{1}{6})n_1^2 - 3(\frac{2}{3})n_2^2 - 3(-\frac{1}{3})n_3^2 + 2(-\frac{1}{2})n_4^2 - (-1)n_5^2 = 0\\ [U(1)_X]^3 : &+ 6n_1^3 - 3n_2^3 - 3n_3^3 + 2n_4^3 - n_5^3 - 3n_6^3 = 0 \end{split}$$

 $+6n_1 - 3n_2 - 3n_3 + 2n_4 - n_5 - 3n_6 = 0$ Unique solution exists!!

LCWS2012

Koji TSUMURA (Nagoya U.)

 M_{Σ}

A model for tiny neutrino masses

 v_{χ}

 M_{Σ}

$$\mathcal{L} = +\overline{Q}Y_u u_R \widetilde{H}_q + \overline{Q}Y_d d_R H_q + \overline{L}Y_\ell \ell_R H_\ell + \text{H.c.}$$

[B-L like] U(1) extension [in Type-I seesaw]

Anomaly cancellation requires 2HDM-X

possible Yukawa int:

$$n_1 - n_3 = n_2 - n_1 = n_6 - n_4 = \frac{3}{4}(n_1 - n_4), \quad n_4 - n_5 = \frac{1}{4}(9n_1 - n_4),$$
$$H_q \qquad \qquad H_\ell$$

2HDM-X can also be a low energy effective theory