Main Linac lattice design for TDR (KCS \& DKS configurations)

V.Kapin, N.Solyak

Fermilab

LCWS12 Int. Workshop on Future Linear Colliders,
October 2012, 22-26 , Univ. of Texas at Arlington, USA

Outline

- The lattices for two layouts
- KCS - Klystron Cluster Scheme ("4-RFU" and "3-RFU")
- DKS - Distributed Klystron Scheme ("3-RFU")
- Treaty points:
- T(P/E)RTML2ML \&
- TPML2BDS/TEML2PS
- Details of modified matching procedures (including optical functions, dispersion minimization and the linac reference orbit following the Earth's curvature)
- Summary \& the present lattice status

ML lattices designed with MAD8 (a special version 51.15.s by M.Woodley) following to the approach*.
*A. Valishev, N. Solyak, M.Woodley, "Status of the ILC Main Linac Lattice Design", PAC’07, 2007.

Changes in TDR layout vs. RDR

- Two configurations:
- KCS: new configuration of CryoUnits (CU) vs. DRFS
- CU contains long (4*RFunit) and short (3*RFunit) cryo-strings
- Length of CU's are different: from 25 to 52 RF units.
- Number of RF units are different for Electron (285) and Positron (282) Linacs
- DKS:
- All cryo-strings are short (3 RF units)
- Treaty points (from RTML and to Undulator/BDS) are modified
- Collimation system migrated from BDS to ML
- Polarity of the last quad in ELIN and PLIN are different.

KCS version (ver. 6/26/2012, C.Nantista)

-- main facilities shaft
-- additional KCS shaft

- - \rightarrow-- cryogenic systems

> \# -- 4-rf unit CSTR
> \# -- 3-rf unit CSTR

It allows to use most of existing RDR solutions and requires small number of re-matchings

Basic lattice segmentations in ML

Name in Lattice	modules	without quad	with quad	without quad	Length (m)		
							7.652
RFU\#	RF unit	12.652	12.652	12.652			
	(lengths in meters)	3 modules					37.956
CSTR\#	"4" Long Cryo-String	RF unit	RF unit	RF unit	RF unit	end-box	
		37.956	37.956	37.956	37.956	2.50	
		12 CM 's plus string end box					154.324
CSTR\#	"3" Short Cryo-String	RF unit	RF unit	RF unit	end-box		
		37.956	37.956	37.956	2.50		
		9 CM's plus string end box					116.368
Service end-box							
CUNIT \#	Cryo-Unit 2.500	CSTR	CSTR	CSTR	CSTR	-..- CSTR	CSTR

KCS: Layout of Cryo-Units

Electron Main Linac: $\quad(72$ CSTR $=285$ RFunits $=855$ CM's $)$

CUNIT1	7.65	CUNIT2	7.65	CUNIT3	7.65	CUNIT4	7.65	CUNIT5	7.65	CUNIT6

Sbox	01	02	03	04	05	06	07						
Sbox	08	09	10	11	12	13	14	15	16	17	18	19	20
Sbox	21	22	23	24	25	26	27	28	29	30	31	32	33
Sbox	34	35	36	37	38	39	40	41	42	43	44	45	46
Sbox	47	48	49	50	51	52	53	54	55	56	57	58	59
Sbox	60	61	62	63	64	65	66	67	68	69	70	71	72

Legend:
7.65 Warm section 7.652 m

Sbox
Service box \#\# Long (4-RFU) CSTR
\#\#
Short (3-RFU) CSTR
Positron Main Linac: $\quad(72$ CSTR $=282$ RFunits $=846$ CM's $)$

| CUNIT1 | 7.65 | CUNIT2 | 7.65 | CUNIT3 | 7.65 | CUNIT4 | 7.65 | CUNIT5 | 7.65 | CUNIT6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sbox	01	02	03	04	05	06	07						
Sbox	08	09	10	11	12	13	14	15	16	17	18	19	20
Sbox	21	22	23	24	25	26	27	28	29	30	31	32	33
Sbox	34	35	36	37	38	39	40	41	42	43	44	45	46
Sbox	47	48	49	50	51	52	53	54	55	56	57	58	59
Sbox	60	61	62	63	64	65	66	67	68	69	70	71	72

■ T Treaty points: optical Functions at Mu boundaries IIL

Electron side \downarrow
Positron side

- The RTML ends with defoc. $\mathrm{Q}=>$ ML starts with focusing \mathbf{Q}
- ML proper ends at the entry of PMSCOL ($p+$ machine protection \& collimation)

Quadrupoles in e- ML (KCS) cells

Basic configurations of focusing structure

A: Quasi-periodical "long" 4-RFU CSTR inside of regular part of CUNITs : 2 FODO quasi-periodical cells (phase advances $\sim 75 / 60$ degrees) $=>$ 4 quads with K1 denoted as K1=KML001, KML002, KML003, KML004

B: Long 4-RFU CSTR between CUNIT ends separated by warm sections: " $5+5$ " quad configuration around warm sections with K1 denoted as KML060-KML064 and KML065-KML069

C: Two short 3-RFU CSTR at connections of CUNIT\#4 with CUNIT\#5, and CUNIT\#5 and CUNIT\#6 (for PLIN only): " $5+5$ " quad configuration around warm sections with K1 denoted as KMLO70-KML074 and KML075-KML079

D: 6 quads at the ML beginning and 6 quads at the ML end are used for matching to the Twiss parameters b and a at ML boundaries.

A 43 KML001-KML004

Matched β-functions in PLIN (KCS)

iln IV

PLIN \& PMPSCOL junction

- RTML ends with defocusing Quad => ML9 ($\mathrm{e}^{+} \& \mathrm{e}^{-}$) starts with focusing Quad
- Positron ML with 282 Quads (= \#RFU) ends with defocusing Quads
- \rightarrow PMSCOL starts with focusing Quad
=> Alternative polarity of Quads is kept throughout total Positron ML

Matching features for ELIN

- ELIN has a regular structure inside; no need for "C"- type matching quads
- Electron ML with 285 Quads starts and ends with focusing Quads
- PMSCOL starts with Q-foc => the same Q-polarities at ELIN \& COL junction
=> Difficult matching with COLL structure resulting in large β-functions

A bad matching at ELIN-end with original COL-structure (large β-function)

iln
 IIL
 Improved ELIN \& EMPSCOL junction

Matched β-functions in ELIN (KCS)

Earth Curvature implementation

- ML follows curvature of the Earth 's surface
- Each CM is straight and aligned along the Earth horizon and the beamline is kinked at the ends of CMs
- Kinks between CM's are implemented in MAD8 as a thin KML-lines consisting of a dipole (MULT, KOL=p) \& a vert. corrector (VKICK): (The former changes both ref. frame and beam trajectory, the latter cancel the trajectory change)
- In MAD8 curvature (KMLs) are switched ON/OFF by "SET, CURVE, 1" \& 0
- KML-lines are set at both ends of every CM. Several types:
> KML1 - between CMs inside of RFUs
$>K M L Q$ - at the ends of CM with quads
> KML2 - between CMs at CSTRs ends
> KML4 - between CMs at CUNITs ends
$>$ KML5 - at the end of the last CM (at ML exit)
$>K M L 8$ - at the beginning of the first CM (ML entrance)

Steering to the Earth's curvature

Constrains:

- The beam trajectory is steered by vertical correctors through the centers of quads, i.e. only at every $3^{\text {rd }} \mathrm{CM}$.
- Steering can be switched "ON/OFF" by "SET, STEER,1" or 0
 black block is the BPM, red - quadrupole, blue - corrector, black line is the beam orbit.

Match corrector strengths along ML:
MATCH, BETAO=TWSSO
VARY, AMLY\# (\# = 10, 11,13,15,22,23,25)
CONSTR, PATTERN="YML...", $Y=0$
LMDIF, TOL=1.E-20,...
MIGRAD, TOL=1.E-20, ...
ENDMATCH

Match AML26, AML27 at exit:
MATCH, BETAO=TWSSO
VARY, AMLY26, STEP=1.E-9
VARY, AMLY27, STEP=1.E-9
CONSTR, \#E, $Y=0, P Y=0$
LMDIF, TOL=1.E-20, CALLS=5000
MIGRAD, TOL=1.E-20, CALLS=5000
ENDMATCH

Notice: Another possible constraint with $\mathrm{Y}>0$ (instead of $\mathrm{Y}=0$) minimizing wake-field effects (Kubo's proposal) is not realized yet in the present ML lattice.

Beam orbit after steering (KCS)

Dispersion minimization (KCS)

- The beam injected into ML must be matched to the periodic dispersion in curved lattice
- The optimal dispersion at injection (TDY \& TDPY) is found by minimizing D_{y} at every defocusing quad.

! Find TDY \& TPDY
SET, CURVE, 1; SET, STEER, 1;
SET, BUMPS, 0; USE, PLIN1
MATCH, BETAO=TWSSO
\section*{VARY, TDY; VARY, TDPY}
WEIGHT, WX=1.E-9
CONSTR, PATTERN="MQD.*", DY=0
LMDIF, TOL=1.E-20;
ENDMATCH
! Save solution at the $6^{\text {th }}$ RFU
SET, MDY, TWSS_QML006[DY]
SET, MDPY, TWSS_QML006[DPY]

ilp IIL

Matching D_{x} \& ref. orbit at ML entrance

- RTML end with DY=0 \& w/o curvature is matched into ML beginning with DY $=0$ \&CURVE=>1
- 5 additional vertical kicks (AMLYi+AMLDY\#\#i) for 5 first correctors at ML beginning are switched on by "SET, BUMPS,1"

SET, CURVE, 1; SET, STEER, 1
SET, BUMPS, 1; USE, PLIN1
SAVEBETA, TWSS1, YMLO03
SAVEBETA, TWSS2, YMLO05
TWISS, BETAO=TWSSO

MATCH, BETAO=TWSSO
VARY, AMLDY11i (12i, 13i, 14i, 15i);
CONSTR, YMLOO3, Y=TWSS1[Y]
CONSTR, YMLO05, $\mathrm{Y}=\mathrm{TWSS2[Y]}$,
PY=TWSS2[PY]
CONSTR, QMLO06[1], DY=MDY, DPY=MDPY
LMDIF (MIGRAD), TOL=1.E-20;
ENDMATCH

V.Kapin \& N.Solyak, ML lattices

Matching DY \& ref. orbit at the ML end

- ML end with $D Y \neq 0$ \& CURVE $=>1$; is matched $P M S C O L$ end with $D Y=0$ \& w/o curvature
- 5 additional vertical kicks (AMLYi+ AMLDY\#\#o) for the last correctors at ML end are switched on by "SET, BUMPS,1"

```
!PLIN example:
SET, CURVE, 1; SET, STEER, 1
SET, BUMPS, 1; USE, PLIN1
SAVEBETA, TWSS1_YML281, YML281
!next-to-last
TWISS, BETAO=TWSSO
MATCH, BETAO=TWSSO
VARY, AMLDY21o (220, 23o, 24o, 25o);
CONSTR, YML281, Y=TWSS1_YML281[Y]
CONSTR, YPLIN2o, Y=0, PY=0, DY=0,
DPY=0
LMDIF (MIGRAD), TOL=1.E-20;
ENDMATCH
```


iln IIL

Matched DY \& Y throughout PLIN (KCS)

Summary for KCS-lattice status

- Main Linac lattices (9+4Q4+9 configuration) for TDR version have been re-designed, tuned and matched
- Tuning and matching subroutines previously created for RDR in 2007 are checked and adaptively modified for TDR-2012 version
- Presented outlook of lattice tuning is a helpful reference in a future, since the CM length can be slightly changed in the final designs
- ML lattices are ready for a further non-optical "textinformation" polishing (like MAD8 "TYPE" statements)
- ML lattices are documented and will be posted at ILC EDMS.

ML DKS version (Ver. 25/6/2012)

Matched β-functions in PLIN (DKS)

Two strings (6-RFU) forms quasi-periodical 6-Q strong focusing cell (phase advances $\sim 3 \times(75 / 60)$ degrees) $=>$ 6 quads with K1 denoted as K1=KML001-KML006

Matched β-functions in PLIN (DKS)

matching at ML entry (after RTML) with 6 quads KML031-KML036; matching between CU1 \& CU2 and CU3 \& CU4 with 6 quads KML051-KML056; matching between CU2 \& CU3 and CU4 \& CU5 with 6 quads KML041-KML045.

iln IIL

PLIN \& PMPSCOL junction (DKS)

Alternative polarity of quads is kept throughout total Positron ML
=> easy matching at the junction with PMPSCOL (original)

iln
 IIL

Matched DY \& Y throughout PLIN (DKS)

ilp IIL

ELIN \& EMPSCOL junction (DKS)

A regular alternating polarity of quads is distorted at the junctions with EMPSCOL. \rightarrow It leads to large spikes of β-function.
To avoid spikes Q-doublet at the EMPSCOL entrance is modified (similar to KCS)

Matched β-functions in ELIN (DKS)

matching at ML entry (after RTML) with 6 quads KML031-KMLO36; matching between CU1 \& CU2 and CU3 \& CU4 with 6 quads KML051-KML056; matching between CU2 \& CU3 and CU4 \& CU5 with 6 quads KML041-KML045.

ilr IIL

Conclusion

- Two Lattices for KCS and DKS Main Linac layouts were designed, based on approach developed for RDR design
- Earth curvature was incorporated in design. Beam reference orbit and dispersion were optimized.
- Tuning and matching subroutines previously created for RDR in 2007 are checked and adaptively modified for TDR-2012 version
- Both ML lattices are documented and will be posted at ILC EDMS.

