Main Linac lattice design for TDR (KCS & DKS configurations)

İİL

V.Kapin, N.Solyak Fermilab

LCWS12 Int. Workshop on Future Linear Colliders, October 2012, 22-26, Univ. of Texas at Arlington, USA

Outline

- The lattices for two layouts
 - KCS Klystron Cluster Scheme ("4-RFU" and "3-RFU")
 - DKS Distributed Klystron Scheme ("3-RFU")
- Treaty points:
 - T(P/E)RTML2ML &
 - TPML2BDS/TEML2PS
- Details of modified matching procedures

 (including optical functions, dispersion minimization and the linac reference orbit following the Earth's curvature)
- Summary & the present lattice status

ML lattices designed with MAD8 (a special version 51.15.s by M.Woodley) following to the approach*.

* A.Valishev, N.Solyak, M.Woodley, "Status of the ILC Main Linac Lattice Design", PAC'07, 2007.

LCWS12, USA, Oct.22-26

- Two configurations:
 - KCS: new configuration of CryoUnits (CU) vs. DRFS
 - CU contains long (4*RFunit) and short (3*RFunit) cryo-strings
 - Length of CU's are different: from 25 to 52 RF units.
 - Number of RF units are different for Electron (285) and Positron (282) Linacs
 - DKS:
 - All cryo-strings are short (3 RF units)
- Treaty points (from RTML and to Undulator/BDS) are modified
- Collimation system migrated from BDS to ML
 - Polarity of the last quad in ELIN and PLIN are different.

KCS version (ver. 6/26/2012, C.Nantista)

Basic lattice segmentations in ML

Neme in							Le	ength (m)
Name in Lattice	modules	without quad	with quad	without quad		warm section	(m)	7.652
RFU#	RF unit	12.652	12.652	12.652				
	(lengths in meters)	3 modu	les					37.956
						and have		
		RF unit		RF unit				
CSTR#	"4" Long Cryo-String	37.956	37.956	37.956	37.956	2.50		
		12 CM's	plus strin	g end bo	K			154.324
OOTD#								
CSTR#	"3" Short Cryo-String			RF unit		1		
		37.956	37.956	37.956	2.50			
		9 CM's p	olus string	end box				116.368
	Service end-box							
CUNIT #	Cryo-Unit 2.500	CSTR	CSTR	CSTR	CSTR	(CSTR	CSTR

LCWS12, USA, Oct.22-26

ilc iic

KCS: Layout of Cryo-Units

Electron Main Linac: (72 CSTR = 285 RFunits = 855 CM's)

CUNIT1 7.65 CUNIT2 7.65 CUNIT3 7.65 CUNIT4 7.65 CUNIT5 7.65 CUNIT6

	CSTR "4"	CSTR "3"	RF units													
CUNIT1 =	5	2	26	Sbox	01	02	03	04	05	06	07					
CUNIT2 =	13		52	Sbox	08	09	10	11	12	13	14	15	16	17	18	19
CUNIT3 =	13		52	Sbox	21	22	23	24	25	26	27	28	29	30	31	32
CUNIT4 =	13		52	Sbox	34	35	36	37	38	39	40	41	42	43	44	45
CUNIT5 =	13		52	Sbox	47	48	49	50	51	52	53	54	55	56	57	58
UNIT6 =	12	1	51	Sbox	60	61	62	63	64	65	66	67	68	69	70	71
otal:	69	3	285													

Positron Main Linac: (72 CSTR = 282 RFunits = 846 CM's)

CUNIT1 7.65 CUNIT2 7.65 CUNIT3 7.65 CUNIT4 7.65 CUNIT5 7.65 CUNIT6

	CSTR "4"	CSTR "3"	RF unit
CUNIT1 =	5	2	26
CUNIT2 =	13		52
CUNIT3 =	13		52
CUNIT4 =	12	1	51
CUNIT5 =	11	2	50
CUNIT6 =	12	1	51
Total:	66	6	282

Sbox	01	02	03	04	05	06	07						
Sbox	08	09	10	11	12	13	14	15	16	17	18	19	20
Sbox	21	22	23	24	25	26	27	28	29	30	31	32	33
Sbox	34	35	36	37	38	39	40	41	42	43	44	45	46
Sbox	47	48	49	50	51	52	53	54	55	56	57	58	59
Sbox	60	61	62	63	64	65	66	67	68	69	70	71	72

LCWS12, USA, Oct.22-26

Treaty points: Optical Functions at ML boundaries

• The RTML ends with defoc. Q => ML starts with focusing Q

• ML proper ends at the entry of PMSCOL (p+ machine protection & collimation)

LCWS12, USA, Oct.22-26

Quadrupoles in e⁻ ML (KCS) cells

Basic configurations of focusing structure

- A: Quasi-periodical "long" 4-RFU CSTR inside of regular part of CUNITs : 2 FODO quasi-periodical cells (phase advances ~75/60 degrees) => 4 quads with K1 denoted as K1=KML001, KML002, KML003, KML004
- B: Long 4-RFU CSTR between CUNIT ends separated by warm sections: "5+5" quad configuration around warm sections with K1 denoted as KML060-KML064 and KML065-KML069
- C: Two short 3-RFU CSTR at connections of CUNIT#4 with CUNIT#5, and CUNIT#5 and CUNIT#6 (for PLIN only): "5+5" quad configuration around warm sections with K1 denoted as KML070-KML074 and KML075-KML079
- D: 6 quads at the ML beginning and 6 quads at the ML end are used for matching to the Twiss parameters b and a at ML boundaries.

LCWS12, USA, Oct.22-26

Matched β -functions in PLIN (KCS)

LCWS12, USA, Oct.22-26

IIL

PL

- **PLIN & PMPSCOL junction**
- RTML ends with defocusing Quad => ML9 (e+&e-) starts with focusing Quad
- **Positron** ML with 282 Quads (= #RFU) ends with defocusing Quads
- PMSCOL starts with focusing Quad
- => Alternative polarity of Quads is kept throughout total Positron ML

V.Kapin & N.Solyak, ML lattices

Matching features for ELIN

- ELIN has a regular structure inside; no need for "C"- type matching quads
- Electron ML with 285 Quads starts and ends with focusing Quads

• PMSCOL starts with **Q-foc** => the same Q-polarities at ELIN & COL junction

Improved ELIN & EMPSCOL junction

LCWS12, USA, Oct.22-26

Matched β -functions in ELIN (KCS)

LCWS12, USA, Oct.22-26

- ML follows curvature of the Earth 's surface
- Each CM is straight and aligned along the Earth horizon and the beamline is kinked at the ends of CMs
- Kinks between CM's are implemented in MAD8 as a thin KML-lines consisting of a dipole (MULT, K0L=p) & a vert. corrector (VKICK): (The former changes both ref. frame and beam trajectory, the latter cancel the trajectory change)
- In MAD8 curvature (KMLs) are switched ON/OFF by "SET, CURVE, 1" & 0
- KML-lines are set at both ends of every CM. Several types:
 - **KML1** between CMs inside of RFUs
 - **KMLQ** at the ends of CM with quads
 - **KML2** between CMs at CSTRs ends
 - KML4 between CMs at CUNITs ends
 - KML5 at the end of the last CM (at ML exit)
 - KML8 at the beginning of the first CM (ML entrance)

Steering to the Earth's curvature

Constrains:

- The beam trajectory is steered by vertical correctors through the centers of quads, i.e. only at every 3rd CM.
- Steering can be switched "ON/OFF" by "SET, STEER,1" or 0

Green blocks are cryomodules, black block is the BPM, red - quadrupole, blue - corrector, black line is the beam orbit.

Match corrector strengths along ML:

MATCH, BETA0=TWSS0 VARY, AMLY# (# = 10, 11,13,15,22,23,25)

CONSTR, PATTERN="YML...", Y=0 LMDIF, TOL=1.E-20,... MIGRAD, TOL=1.E-20, ... ENDMATCH

Match AML26, AML27 at exit:

MATCH, BETAO=TWSSO VARY, AMLY26, STEP=1.E-9 VARY, AMLY27, STEP=1.E-9 CONSTR, #E, Y=0, PY=0 LMDIF, TOL=1.E-20, CALLS=5000 MIGRAD, TOL=1.E-20, CALLS=5000 ENDMATCH

Notice: Another possible constraint with Y > 0 (instead of Y=0) minimizing wake-field effects (Kubo's proposal) is not realized yet in the present ML lattice.

Beam orbit after steering (KCS)

LCWS12, USA, Oct.22-26

- The beam injected into ML must be matched to the periodic dispersion in curved lattice
- The optimal dispersion at injection (TDY & TDPY) is found by minimizing D_y at every defocusing quad.

Matching D_y & ref. orbit at ML entrance

- RTML end with DY=0 & w/o curvature is matched into ML beginning with DY ≠0 &CURVE=>1
- 5 additional vertical kicks (AMLYi+AMLDY##i) for 5 first correctors at ML beginning are switched on by "SET, BUMPS,1"

LCWS12, USA, Oct.22-26

Matching DY & ref. orbit at the ML end

- ML end with DY ≠0 & CURVE=>1; is matched PMSCOL end with DY=0 & w/o curvature
- 5 additional vertical kicks (AMLYi+ AMLDY##o) for the last correctors at ML end are switched on by "SET, BUMPS,1"

LCWS12, USA, Oct.22-26

Matched DY & Y throughout PLIN (KCS)

LCWS12, USA, Oct.22-26

Summary for KCS-lattice status

- Main Linac lattices (9+4Q4+9 configuration) for TDR version have been re-designed, tuned and matched
- Tuning and matching subroutines previously created for RDR in 2007 are checked and adaptively modified for TDR-2012 version
- Presented outlook of lattice tuning is a helpful reference in a future, since the CM length can be slightly changed in the final designs
- ML lattices are ready for a further non-optical "textinformation" polishing (like MAD8 "TYPE" statements)
- ML lattices are documented and will be posted at ILC EDMS.

ML DKS version (Ver. 25/6/2012)

11	long str short str	warm drift	long str 21 short str	warm drift	0 long str 21 short str	warm	long str	drift	0 long str 21 short str	drift	collimation	undulator	66	
33		space	63 ML units		63 ML units				63 ML units			section	undulators	Source
	1282.5	7.652	2446.2	7.652	2446.2	7.652	2446.2	7.652	2446.2	7.652		295.9	318.0	BDS
			Electron ML		285 RF units									DR
0	long str short str	warm drift	0 21 strings	warm drift	0 21 strings	warm	0 21 strings	warm drift	0 20 strings	warm drift	collimation			
33		space	63 ML units		63 ML units		-		60 ML units			Source		
	1282.5	7.652	2446.2	7.652	2446.2	7.652	2446.2	7.652	2446.2	7.652		BDS		
												DR		
			Positrion ML		282 RF units								-	

LCWS12, USA, Oct.22-26

ΪĹ

Matched β -functions in PLIN (DKS)

Two strings (6-RFU) forms quasi-periodical 6-Q strong focusing cell (phase advances ~ 3 x (75/60) degrees) => 6 quads with K1 denoted as K1=KML001-KML006

LCWS12, USA, Oct.22-26

Matched β -functions in PLIN (DKS)

matching at ML entry (after RTML) with 6 quads KML031-KML036; matching between CU1 & CU2 and CU3 & CU4 with 6 quads KML051-KML056; matching between CU2 & CU3 and CU4 & CU5 with 6 quads KML041-KML045.

LCWS12, USA, Oct.22-26

IIL

Alternative polarity of quads is kept throughout total Positron ML

PLIN & PMPSCOL junction (DKS)

=> easy matching at the junction with PMPSCOL (original)

LCWS12, USA, Oct.22-26

Matched DY & Y throughout PLIN (DKS)

LCWS12, USA, Oct.22-26

IL

ELIN & EMPSCOL junction (DKS)

A regular alternating polarity of quads is distorted at the junctions with EMPSCOL. \rightarrow It leads to large spikes of β -function.

To avoid spikes Q-doublet at the EMPSCOL entrance is modified (similar to KCS)

LCWS12, USA, Oct.22-26

Matched β -functions in ELIN (DKS)

matching at ML entry (after RTML) with 6 quads KML031-KML036; matching between CU1 & CU2 and CU3 & CU4 with 6 quads KML051-KML056; matching between CU2 & CU3 and CU4 & CU5 with 6 quads KML041-KML045.

LCWS12, USA, Oct.22-26

Matched DY & Y throughout ELIN (DKS)

IIL

- Two Lattices for KCS and DKS Main Linac layouts were designed, based on approach developed for RDR design
- Earth curvature was incorporated in design. Beam reference orbit and dispersion were optimized.
- Tuning and matching subroutines previously created for RDR in 2007 are checked and adaptively modified for TDR-2012 version
- Both ML lattices are documented and will be posted at ILC EDMS.

İİL