A model for the Higgs inflation and its testability at the ILC

Takehiro Nabeshima University of Toyama

Collaborator S. Kanemura, T. Matsui (University of Toyama)

LCWS12: 23 Oct. 2012

1.Introduction

Why we need an inflation?

The flatness problem

 $\Omega_0 = 1.002 \pm 0.011$ $|\Omega_P - 1| \le O(10^{-60})$

The Universe is flat but the standard cosmology cannot explain this flatness.

The horizon problem

The temperature of the CMB is almost the same value but light cone cover less than 2°

These problems can be solved by exponential expansion.

1.Introduction

Inflation

If H is a constant, The Universe expands by exponential.

$$\varepsilon \equiv \frac{1}{2} M_p^2 (V'/V)^2 <<1 \quad \eta \equiv M_p^2 V''/V <<1$$

If potential satisfies the slow-roll condition,
 ϕ can act as an inflaton.

2. Higgs inflation

SM-Higgs satisfies ε , η and P_R !

But! Problems in the simplest case

Solutions for the problems

(I) Unitarity

G.F.Giudice, H.M.Lee, PLB694, 294(2011)

We add a heavy scalar particle saving unitarity.

(Ⅱ) Vacuum stability ⇒ Extended Higgs sector.

Renormalization group equations

The inert doublet model

$$V = \frac{M_P R}{2} + (\xi_1 |\Phi_1|^2 + \xi_2 |\Phi_2|^2) R + \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\frac{1}{2} \lambda_5 ((\Phi_1^{\dagger} \Phi_2)^2]$$

Previous work

Gong, Lee and Kang (2012)

$$\Phi_{1} = (\phi^{+}, \phi^{0})$$

$$\Phi_{2} = [H^{+}, (H^{0} + iA^{0})/\sqrt{2}]$$

$$m_{h}^{2} = \lambda_{1}v^{2}$$

$$m_{H^{\pm}}^{2} = \mu_{2}^{2} + \frac{1}{2}\lambda_{3}v^{2}$$

$$m_{H}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} + \lambda_{5})v^{2}$$

$$m_{A}^{2} = \mu_{2}^{2} + \frac{1}{2}(\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}$$

Inflation can be explained

Dark matter and neutrino masses cannot be explained.

Our model can explain: Inflation (inert doublet model) Neutrino masses (radiative seesaw) Dark matter (CP-odd higgs A)

The mass spectrum is almost determined from the current data.

Our model can be tested by measuring model parameters at collider experiments

Inflation

$$V = \frac{M_P R}{2} + (\xi_1 |\Phi_1|^2 + \xi_2 |\Phi_2|^2) R$$

+ $\mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2$
+ $\lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\frac{1}{2} \lambda_5 ((\Phi_1^{\dagger} \Phi_2)^2)]$

Vacuum stability:

 $\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_3 + \lambda_4 + \lambda_5 + \sqrt{\lambda_1 \lambda_2} > 0$ Inflaton condition:

$$\lambda_2 \xi_1 - (\lambda_3 + \lambda_4) \xi_2 > 0$$

$$\lambda_1 \xi_2 - (\lambda_3 + \lambda_4) \xi_1 > 0$$

$$\lambda_1 \lambda_2 - (\lambda_3 + \lambda_4)^2 > 0$$

CMB temperature fluctuations:

$$\begin{aligned} \xi_2 \sqrt{\frac{2(\lambda_1 + a^2\lambda_2 - 2a(\lambda_3 + \lambda_4))}{\lambda_1\lambda_2 - (\lambda_3 + \lambda_4)^2}} & a \equiv \xi_1/\xi_2 \\ \approx 5 \times 10^4 \\ \frac{\lambda_5}{\xi_2} \frac{a\lambda_2 - (\lambda_3 + \lambda_4)}{\lambda_1 + a^2\lambda_2 - a(\lambda_3 + \lambda_4)} & \leq 4 \times 10^{-12} \end{aligned}$$

Inflation

$$V = \frac{M_P R}{2} + (\xi_1 |\Phi_1|^2 + \xi_2 |\Phi_2|^2) R$$

+ $\mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2$
+ $\lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\frac{1}{2} \lambda_5 ((\Phi_1^{\dagger} \Phi_2)^2)]$

Vacuum stability:

 $\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_3 + \lambda_4 + \lambda_5 + \sqrt{\lambda_1 \lambda_2} > 0$ Inflaton condition: $\lambda_2 \xi_1 - (\lambda_2 + \lambda_4) \xi_2 > 0$

$$\lambda_1 \xi_2 - (\lambda_3 + \lambda_4)\xi_1 > 0$$

 $\lambda_1\lambda_2 - (\lambda_3 + \lambda_4)^2 > 0$

CMB temperature fluctuations:

$$\xi_{2}\sqrt{\frac{2(\lambda_{1}+a^{2}\lambda_{2}-2a(\lambda_{3}+\lambda_{4}))}{\lambda_{1}\lambda_{2}-(\lambda_{3}+\lambda_{4})^{2}}} \quad a \equiv \xi_{1}/\xi_{2}$$

$$\frac{\lambda_{5}}{\xi_{2}}\underbrace{\frac{a\lambda_{2}-(\lambda_{3}+\lambda_{4})}{\lambda_{1}+a^{2}\lambda_{2}-a(\lambda_{3}+\lambda_{4})}}_{\xi_{2}-a(\lambda_{3}+\lambda_{4})} \leq 4 \times 10^{-12}$$

Dark matter

Mass spectrum 10²GeV 10¹⁷GeV 0.262 $\leftarrow m_{\mu}$ =126GeV(LHC) λ1 1.75 0.367 9.00 λ_{2} 0.495 7.11 ←Inflation λ_{2} ← Dark matter(WMAP+XENON100) -0.447 -3.16 λ, λ_5 0.0700 0.116 m_h=126GeV m_H=92.0GeV a=0.4, $\xi_2 = 5 \times 10^5$, $m_{H\pm}$ =141GeV $\mu_2^2 \sim 4230 GeV^2$ m_{A} =65.0GeV $m_A < m_H (\approx 90 \text{GeV}) < m_h < m_{H\pm} (\approx 140 \text{GeV})$

Our model predicts

the mass spectrum of inert scalar bosons !

4.Phenomenology

LHC

Q.H.Cao, E.Ma, G.Rajasekaran(2007)

$pp \to Z^* \to AH \to H$	$HZ^* \rightarrow$	$HH\ell^+\ell$	2—	
	BKGD	basic	optimal	$m_{\ell\ell} < 10{\rm GeV}$
	WW	$1.1 imes 10^5$	110	62
$15 \text{ GeV} \le P_T^{\ell} \le 40 \text{ GeV} \eta^{\ell} \le 3.0 $	ZZ	$2.1 imes10^4$	3	0
	total	$1.3 imes10^5$	113	62
$\cos\theta_{\ell\ell} \ge 0.9 \cos\phi_{\ell\ell} \ge 0.9$				
$E_{Tmiss} \le 60 \text{ GeV} \ m_{\ell\ell} \le 10 \text{ GeV}$	Signal	basic	optimal	$m_{\ell\ell} < 10 \mathrm{GeV}$
	$\left(m_{H^0},m_{A^0}\right)$	Starte	optimu	
	(50, 60)	117	37	37
	S/B	$9 imes 10^{-4}$	0.33	0.60
	S/\sqrt{B}	0.32	3.48	4.70
	(50, 70)	433	56	50
If $m_A = 65$ GeV and m_H is large,	S/B	$3.3 imes10^{-3}$	0.50	0.81
it would be difficult to test	S/\sqrt{B}	1.20	5.27	6.35
at the LUC	(50, 80)	680	38	26
	S/B	$5.2 imes 10^{-3}$	0.34	0.42
	S/\sqrt{B}	1.89	3.57	3.3

4.Phenomenology

5.Conclusion

- 1 We consider the case of the Higgs inflation.
- 2 It is difficult that SM act as the inflation
- ③ We show that inflation, dark matter and neutrino masses can be explained simultaneously by the inert doublet with right handed neutrinos.
- **4** Our model predicts

mass spectrum of inert scalar boson.

- **(5)** Mass spectrum of inert scalar boson could be tested at the ILC.
- **(6)** If Higgs and inert doublet components act as an inflaton, this case could be tested at the ILC.

Back up

LEP bound

Our parameter consistent with LEP bound

LEP bound

Our parameter consistent with LEP bound

3.Our model

Our model can explain these problem and would be tested at collider experiments