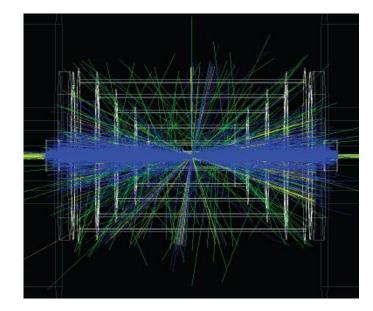
# Higgs self-coupling studies at CLIC (preliminary)

Tomáš Laštovička (IoP AC, Prague) Jan Strube (CERN, Geneva)

> LCWS2012, Arlington, TX October 22-26, 2012





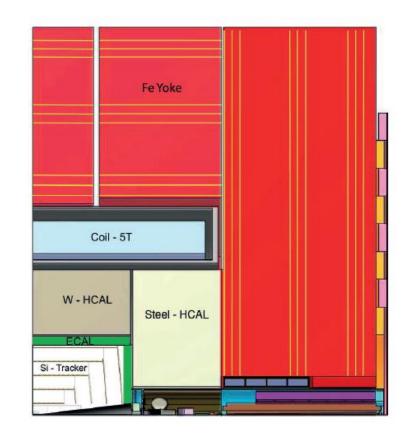



- CLIC ENVIRONMENT
- HIGGS TRILINEAR COUPLING
- EVENT RECONSTRUCTION AND SELECTION
- RESULTS FOR 1.4 TeV AND 3 TeV CLIC
  - CUT-AND-COUNT METHOD
  - TEMPLATE FITTING
- 126 GeV HIGGS
- POLARISED CLIC BEAMS
- ANALYSIS PROSPECTS
- SUMMARY

# **CLIC** ENVIRONMENT

| Center of mass energy                     | 500 GeV   | 1.4 (1.5) TeV | 3 TeV  |
|-------------------------------------------|-----------|---------------|--------|
| Bunch spacing                             | 0.5ns     | 0.5 ns        | 0.5 ns |
| Bunches per train                         | 354 (312) | 312           | 312    |
| Train repetition rate                     | 50 Hz     | 50 Hz         | 50 Hz  |
| $\gamma\gamma \rightarrow$ hadrons per BX | 0.3       | 1.3           | 3.2    |

- Challenging environment
- $\gamma\gamma$  overlay  $\rightarrow$  19TeV visible energy @ 3 TeV
  - Reduced by a factor of 16 in 10ns readout window.
  - Requires to employ "LHC-style" jet reconstruction algorithms (typically FastJet k<sub>T</sub>).
- For CLIC staging see D. Schulte's presentation.



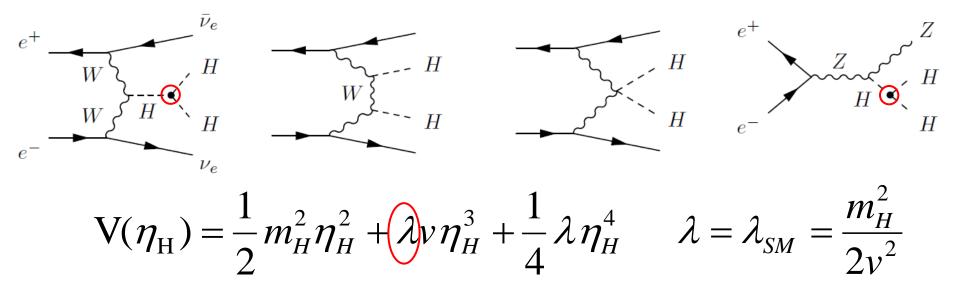

Staging scenario A(B)

# THE CLIC DETECTORS

- CLIC\_SiD and CLIC\_ILD
  - based on SiD and ILD detector concepts for ILC Letters of Intent.

- CLIC\_SiD concept
  - CDR Light Higgs analyses
    - $H \rightarrow bb, H \rightarrow cc, H \rightarrow \mu\mu$
    - $H \rightarrow HH$
  - Inner vertex layer @ 27mm was 14mm for the SiD
  - 7.5  $\lambda$  W-HCAL barrel
  - Tracking down to  $10^{\circ}$
  - 5T magnetic field




# **CLIC HIGGS STUDIES**

- Event generation, both signal and background: Whizard 1.95
  - realistic beam spectrum, ISR
  - unpolarised beams
- Hadronisation: Pythia 6.4
- Full event simulation
  - Geant4 via SLIC (CLIC\_SiD)
  - 60 BX  $\gamma\gamma$   $\rightarrow$  hadrons overlaid in each event @ both 3.0 and 1.4 TeV
- Full event reconstruction
  - PFA with PandoraPFA
  - 10 ns readout window; except HCAL: 100 ns
- Target integrated luminosity: 2 ab<sup>-1</sup> (3 TeV) and 1.5 ab<sup>-1</sup> (1.4 TeV)
- CLIC @ 3.0 (1.4) TeV: σ<sub>hhvv</sub> = 0.63 (0.164) fb; via WW fusion

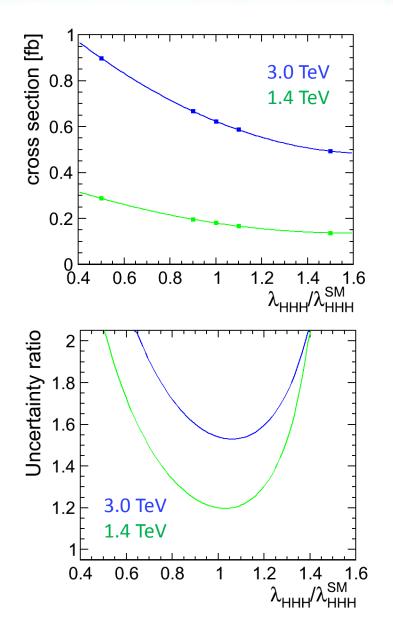
- Due to historical reasons most of the analysis is done for 120 GeV Higgs.
- Higgs decay modes
  - The final state is HHvv; Pythia consequently decays Higgs to: b, c, s,  $\mu$ ,  $\tau$ , g,  $\gamma$ , Z, W
- 126 GeV samples generated and tested
  - small degradation of results w.r.t. 120 GeV Higgs is observed
- SM Background
  - Standard Model 4Q and 2Q backgrounds
    - <u>aqaqvv</u>, qqqqev, qqqqll, qqqq
    - Hvv, qqvv, qqev, qqll, qq (3 TeV only)
  - Due to technical difficulties qqqqev background is not included at 3 TeV
    - currently being simulated and reconstructed

# **HIGGS TRILINEAR COUPLING**

#### **HIGGS TRILINEAR COUPLING**



- $\lambda$  represents the trilinear coupling
  - and quartic coupling (difficult to measure)
  - direct determination of the Higgs potential
  - the force that makes Higgs condense in the vacuum
- WW fusion HHvv dominates over Higgs-strahlung ZHH for √s ≈ 1.2 TeV and above
  - In WW (ZHH) channel the cross section increases (decreases) with decreasing  $\lambda$ .

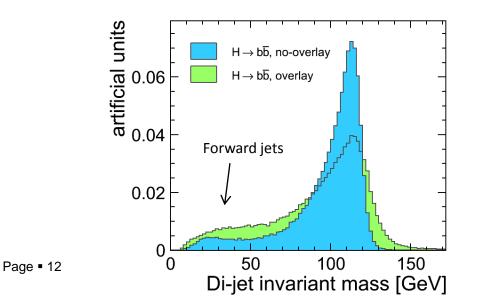

## Extraction of $\lambda$ from $\sigma_{HHvv}$ cross section

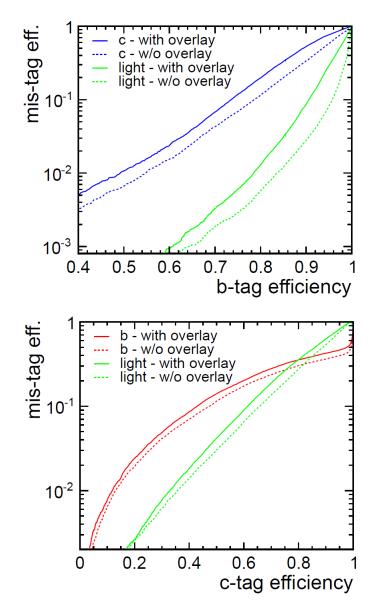
- An option to change the Higgs self-coupling parameter was added to Whizard.
- Cross section  $\sigma_{hhvv}$  calculated with various  $\lambda_{HHH}/~\lambda^{SM}_{~~HHH}$ 
  - 3 TeV and 1.4 TeV CLIC beam spectrum, ISR
- Cross section dependence fitted by a 2<sup>nd</sup> order polynomial.

$$\frac{\Delta\lambda}{\lambda} = R \frac{\Delta\sigma}{\sigma}$$

• Values of "uncertainty relating factor R" at  $\lambda_{\text{HHH}} / \lambda^{\text{SM}}_{\text{HHH}} = 1$  (Whizard 2):

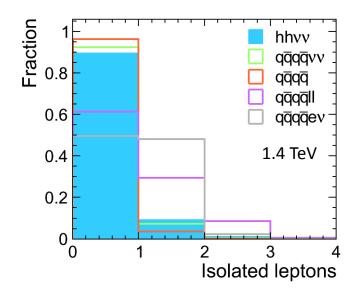
3.0 TeV: 1.54 1.4 TeV: 1.20





- Multi-jet final state with missing energy
- Missing energy leads to low energy jets
- Pile-up from  $\gamma\gamma \rightarrow$  hadrons beam background
  - Jet flavour tagging affected
  - Downgrades jet/event reconstruction
  - Small separation between H and W/Z

# JET FLAVOUR TAGGING AT 3TeV WITH YY OVERLAY

#### LCFIVERTEX package


- FANN neural net package used throughout the Higgs analysis both for the flavour tag and the event selection.
- Presence of γγ overlay (60BX considered) degrades both the jet-finding and the jet flavour tag quality (shown for di-jet events).





#### **EVENT SELECTION**

- 4 jets reconstructed with FastJet
  - 3 possible combinations to make two Higgs bosons.
  - Jets paired in hemispheres.
  - A purely geometric criterion to pair jets is less biased than a kinematic one.
  - Forward jet reconstruction is difficult and at some point leads to losing particles and replacing them with background.
- No isolated leptons
  - Suppression of qqqqll and qqqqev.
- Neural network classifier
  - Combining 22 quantities into one.



#### **NEURAL NET INPUTS**

invariant masses of jet pairs

```
event invariant mass and visible energy
```

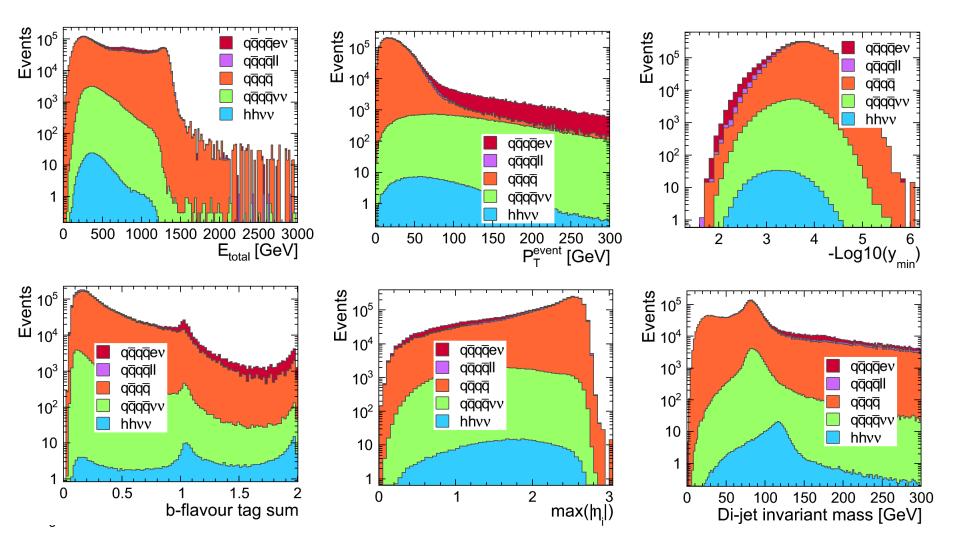
missing transverse energy E<sub>t</sub>

y<sub>min</sub> and y<sub>max</sub> from FastJet

 $p_t^{min}$ ,  $p_t^{max}$  of jets

#leptons and #photons in event

 $max(|\eta_i|)$  and  $sum(|\eta_i|)$  of jet pseudorapidities  $\eta_i$ 

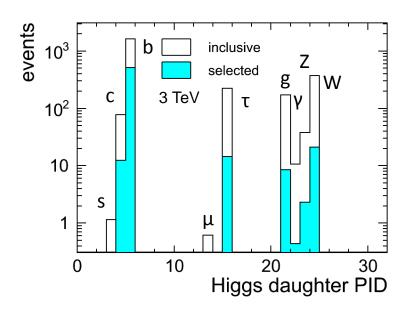

angle between jet pairs

sums of LCFI flavour tag outputs (per jet pair):

b-tag, c(b)-tag, c-tag and b(light)-tag

#### **EVENT SELECTION**

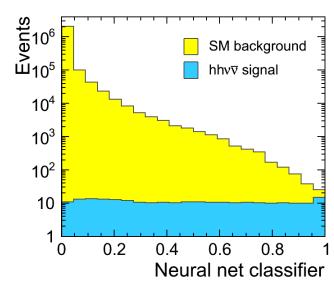
Example variables/inputs for 1.4 TeV; signal and 4q backgrounds shown.




#### **CUT-AND-COUNT METHOD**

- Find a cut on the neural network output which minimises
  - Signal (HHvv) cross section uncertainty

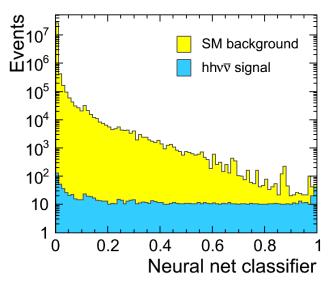
- or -


- Directly the  $\lambda_{HHH}$  uncertainty
  - Uncertainty ratio R may depend on the event selection.
  - Signal samples with 0.8  $\lambda_{SM}$  and 1.2  $\lambda_{SM}$  added to evaluate  $\lambda_{HHH}$  uncertainty per cut.
- No explicit channel selection enforced
  - H→bb channel naturally dominates after the neural net selection.
- Statistical uncertainty evaluation
  - Count signal (S) and background events (B):
    √(S+B)/S



# 1.4 TeV RESULTS FOR 1.5 ab<sup>-1</sup>

|                                | $\sigma_{_{HHvv}}$ minimisation | $\lambda_{_{HHH}}$ minimisation |
|--------------------------------|---------------------------------|---------------------------------|
| $\sigma_{_{HHvv}}$ uncertainty | 30%                             |                                 |
| λ <sub>ннн</sub> uncertainty   | 36% (R = 1.2)                   | 35%                             |
| Signal                         | 28 <sup>+8.8</sup> -8.1         | 28 <sup>+8.8</sup> -8.1         |
| Background                     | 43                              | 43                              |
| Signal total                   | 246                             | 246                             |
| Signal efficiency              | 11%                             | 11%                             |


- Both minimisations give about the same result.
- Background dominated by
  - qqqqvv, qqqqlv and qqqq (4xCS than at 3 TeV)

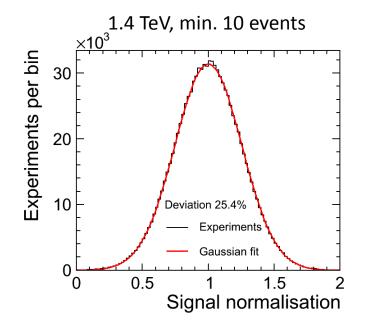


# 3.0 TeV RESULTS FOR 2 ab<sup>-1</sup>

|                                | $\sigma_{_{HHvv}}$ minimisation | $\lambda_{_{HHH}}$ minimisation |
|--------------------------------|---------------------------------|---------------------------------|
| $\sigma_{_{HHvv}}$ uncertainty | 13%                             |                                 |
| λ <sub>ннн</sub> uncertainty   | 20% (R = 1.54)                  | 21.3%                           |
| Signal                         | 151                             | 291                             |
| Background                     | 229                             | 1235                            |
| Signal total                   | 1260                            | 1260                            |
| Signal efficiency              | 12%                             | 23%                             |

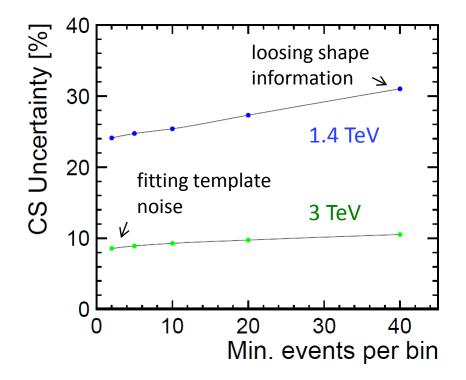
- Direct  $\lambda_{HHH}$  minimisation prefers almost twice as many events compared to  $\sigma_{HHvv}$  minimisation.
- Complete set of backgrounds except qqqqlv
  - Currently being generated and simulated.




#### **TEMPLATE FITTING**

- Neural network (BDT, ... ) should digest all available information from its inputs and concentrate it in its output.
- Cut-and-count method does not fully harvest the neural net output information, however, the template fitting should.
- Template fitting merely considered as an indicator of measurement limits.
  - BINNED TEMPLATE FITTING

Neural net output binned into a fine-binned histogram re-binned: at least N signal and bkgr. events per bin 10<sup>6</sup> "experiments" generated and fitted


- UNBINNED TEMPLATE FITTING

ROOFIT employed to obtain signal and bkgr. PDFs work in progress...



| 1.4 TeV | $\sigma_{_{HHvv}}$ uncertainty | Ratio R | λ <sub>ΗΗΗ</sub> uncertainty |
|---------|--------------------------------|---------|------------------------------|
|         | 24 – 26%                       | x 1.20  | 29 – 31%                     |
| 3.0 TeV |                                |         |                              |
|         | 9 - 10%                        | x 1.54  | 13.5 – 15%                   |

- There is a dependency of the σ<sub>HHvv</sub> uncertainty on the expected number of events per bin
  - When the number of entries per bin is large, the information in the "distribution shape" is lost.
  - On the other hand, when it is small, we fit the template/event noise.
- Unbinned template fitting.
  - under progress



# **126 GeV Higgs**

- Analysis was repeated with 126 GeV Higgs samples.
- Default self-coupling value only
  - Modified coupling samples will be added.

| 1.4 TeV |                | σ <sub>HHvv</sub> unc. 126 GeV | σ <sub>HHvv</sub> unc. 120 GeV |
|---------|----------------|--------------------------------|--------------------------------|
|         | Cut-and-count: | 35%                            | 30.2%                          |
|         | Template fit:  | ~30%                           | 24-26%                         |
| 3.0 TeV |                |                                |                                |
|         | Cut-and-count: | 13.5%                          | 13%                            |
|         | Template fit:  | 10.5-11%                       | 9-10%                          |

•  $\sigma_{HHvv}$  uncertainty degradation observed. Effect on  $\lambda_{HHH}$  yet to be evaluated.

### **CLIC** WITH POLARISED BEAMS

- Polarisation considered: 80% 0%
  - The signal cross sections are about 1.4-1.7x larger (qqqqvv, qqvv 2.2x larger)
  - The following results are merely indicative
    - only cross sections changed, no events simulated/reconstructed, no NN re-training

| 1.4 TeV |                   | σ <sub>HHvv</sub> unc. (80%-0%) | σ <sub>HHvv</sub> unc. (0%-0%) |
|---------|-------------------|---------------------------------|--------------------------------|
|         | σ <sub>HHvv</sub> | 0.233 fb                        | 0.164 fb                       |
|         | Cut-and-count:    | ~26%                            | 30.2%                          |
|         | Template fit:     | ~20-21%                         | 24-26%                         |
| 3.0 TeV |                   |                                 |                                |
|         | σ <sub>HHvv</sub> | 1.05 fb                         | 0.63 fb                        |
|         | Cut-and-count:    | ~10%                            | 13%                            |
|         | Template fit:     | ~7-8%                           | 9-10%                          |

- Background samples will be completed.
- There may be some potential in improving the jet reconstruction.
  - Few paths pursued: e.g. vertex assisted jet finding and jet reconstruction (small effect).
  - FastJet was not tuned for  $e^+e^-$  collissions.
- 126 GeV Higgs
  - Modified coupling samples
- Polarised beams
  - 80% 0% considered, uncertainty improved by a factor of 1.2-1.3 when compared to unpolarised beams
  - @ 80% 30% the signal cross section is even larger (1.364 fb @ 3 TeV)
    - This would, naively, lead to a factor of ~1.5, compared to unpolarised beams.
    - Eventually reaching 10%  $\lambda_{HHH}$  uncertainty (?)

#### SUMMARY

- Preliminary results were presented of the Higgs self-coupling measurement with 1.4 TeV and 3 TeV CLIC machine.
  - Full simulation and reconstruction in CLIC\_SiD; realistic beam spectrum, ISR, ...
  - Unpolarised beams
  - Accounted for realistic  $\gamma\gamma \rightarrow$  hadrons event pile-up/overlay.
  - Event selection based on neural networks.
  - Two methods: cut-and-count, template fitting.
  - We observe  $30 35\% \lambda_{HHH}$  uncertainty @ 1.4 TeV and 15 20% uncertainty @ 3 TeV
    - for 120 GeV Higgs
    - Note: qqqqlv background will be added at 3 TeV.
  - For 126 GeV Higgs a degradation of cross section uncertainty has been observed.
    - Effect on  $\lambda_{HHH}$  yet to be evaluated.
  - Beam polarisation will significantly improve  $\sigma_{_{HHvv}}$  and  $\lambda_{_{HHH}}$  uncertainties due to higher signal cross sections.