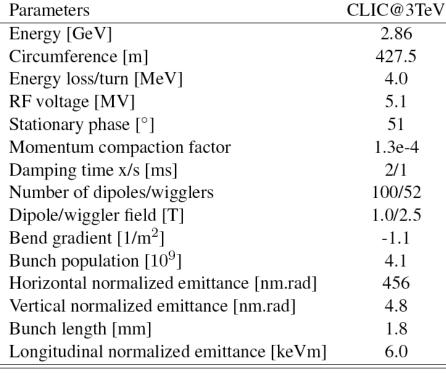
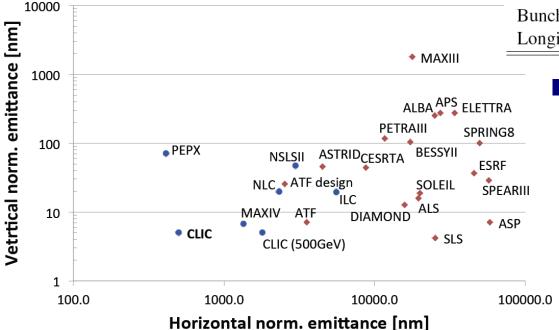


Dream test facilities for Damping ring R&D

Yannis PAPAPHILIPPOU CERN

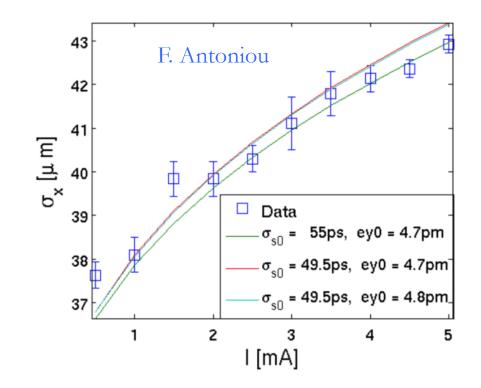

October 25th, 2012



CLIC DR parameters

- CLIC damping rings target ultra-low emittance in all 3 dimensions for relatively high bunch charge
- Dominated by collective effects (IBS, space-charge, ecloud, FII, CSR,...)

Challenging technology (SC wigglers, Extraction kickers, RF system, Vacuum, Instrumentation, Feedback)



CLIC DR beam

dynamics experiments

- Low Emittance Tuning
 - SLS, Australian Synchrotron
- IBS
 - □ CESRTA, **SLS**
- E-cloud
 - □ CESRTA
- CSR
 - □ ANKA, ATF
- Optics, non-linear correction
 - □ DIAMOND, **SOLEIL**
- Fast Ion Instability
 - □ SOLEIL
- Instabilities

DR technology and experimental program

- Super-conducting wigglers
 - □ Demanding magnet technology combined with cryogenics and high heat load from synchrotron radiation (absorption)
- High frequency RF system
 - 1.5GHz RF system in combination with high power and transient beam loading
- Coatings, chamber design and ultralow vacuum
 - ☐ Electron cloud mitigation, low-impedance, fast-ion instability
- Kicker technology
 - ☐ Extracted beam stability
- Diagnostics for low emittance
 - ☐ Profile monitors, feedback system

Prototype built in BINP, to be tested in ANKA (2013-2014)

Discussions with ALBA and SLAC (HELP NEEDED)

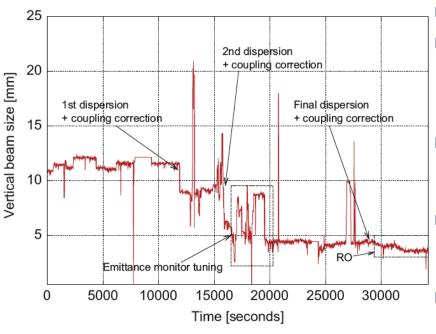
- Measurements at SPS, ESRF, CERTA, discussions with MAXlab
- Stripline designed by Spanish industry, to be tested in ALBA, pulser in collaboration with SLAC, Full system test in ATF
- V-UV Profile Monitor (TIARA), initiated collaboration with ALBA, Australian Light Source
 - vertical undulator

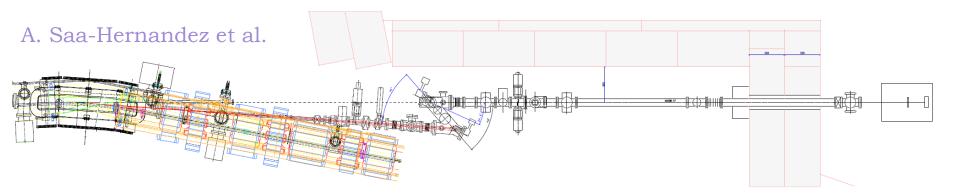
DR R&D

Area	Scope	Institutes	Period	Contract
Optics and non-linear dynamics	Methods and diagnostics for linear and non-linear correction	JAI	2011-2013	MOU
Vertical emittance	Beam dynamics and technology	SLS, MAXlab, INFN/LNF	2011-2013	EU/TIARA
minimization	(alignment, instrumentation) for reaching sub-pm vertical emittance	ACAS	2010-2012	MOU
		JAI	2011-2013	MOU
Intrabeam Scattering	Experiments for theory/code benchmarking CESR/TA,		2010	ILC/CLIC collaboration,
E-cloud	Experiments for instability and mitigation	SLS	2010	LER network
Fast Ion Instability	Experiments for theory/code benchmarking, feedback tests	SOLEIL, ATF	2011	LER network
Super-conducting Wiggler	Prototype development and beam tests	KIT, BINP	2011-2013	MOU, K- contract
Fast kicker development	Conceptual design, prototyping and beam measurements (double kicker)	IFIC Valencia, ALBA, ATF	2011-2013	Spanish industry program
RF design	RF prototype and beam tests (including LLRF)	ALBA, SLAC	2011	LER network
Vacuum technology	Desorption tests of coated chambers in a beam line	ESRF, MAXIV	2011	

WP6 - SVET

- SVET: "SLS Vertical Emittance Tuning"
- Objectives:
 - □ Allow the Swiss Light Source (SLS) to be used as an R&D Infrastructure
 - □ Demonstrate ultra-small vertical emittances as required for future Linear Collider Damping Rings (e.g. 5 nm normalized, <1 pm @ 2.86 GeV for CLIC)
 - □ Enable to extend tests to lower energies (IBS dominated regime).




Vertical emittance RECORD

M. Aiba, M. Boge, N. Milas, A. Streun

- After re-alignment campaign of last autumn, series of MD shifts scheduled (end of 2011)
- Beam of 400 mA stored in top up mode
- Different methods of coupling suppression using 36 skew quadrupoles (combination of response matrix based correction and random walk optimisation)
 - Performance of existing emittance monitor had to be further stretched to get beam profile data at a size of around 3-4µm
 - Vertical emittance reduced to a minimum value of **0.9±0.4pm** (CLIC damping rings target vertical emittance) which is a **new world record**
 - Work in progress for reproducibility of this result and understanding of systematic model errors
- New monitor to be commissioned during 2013

Low Emittance Rings' network

- Bring together scientific communities of synchrotron light sources' storage rings, damping rings and lepton colliders in order to communicate, identify and promote common work on topics affecting the design of low emittance lepton rings
- Initiated by a Low Emittance Ring workshop, 01/2010@CERN, see http://cern.ch/ler2010
- State of the art in design of accelerator systems especially in X-ray storage rings approaches the goals of damping rings for linear colliders and future B-factories' upgrade projects
- Common tasks identified including beam dynamics but also technology
- Second workshop in 10/2011 @ Heraklion acted as a catalyzer, see http://cern.ch/lowering2011
- Collaboration network enable scientific interaction and coordination for common design work including measurements and tests in existing facilities for achieving ultra-low emittance, high intensity beams with remarkable stability
- Network approved with 330kE allocated budget for 4 years starting May 2013
- Next workshop to be organized on July 2013

Low-E-Ring

Coordination and Tasks

- Coordinators: Y. Papaphilippou (CERN), S. Guiducci (INFN-LNF), R. Bartolini (STFC-JAI-DIAMOND)
- Members: M. Biagini (INFN-LNF), M. Boege (PSI), R. Nagaoka (Soleil), H. Schmickler (CERN)
- Additional non-EU members: M. Palmer (Cornell), J. Urakawa (KEK)
 - □ Participants but not contractual partners
- ☐ Task 1: Low Emittance Ring Design (LERD)
 - Coordinator: M. Boege (PSI)
- □ Task 2: Beam INstabilities, Impedances and Vacuum (BINIV)
 - Coordinator: R. Nagaoka (SOLEIL)
- □ Task 3: Low Emittance Rings Technology (LERT)
 - Coordinator: H. Schmickler (CERN)
- Interest expressed by the 28 following institutes: ANKA-KIT, ANL, Australian Synchrotron, BESSY/HZM, BINP, BNL-NSLSII, CELLS-ALBA, CERN, Cockroft Ins, CIEMAT, Cornell Un., DESY, Elettra, ESRF, FNAL, IFIC-Valencia, INFN-LNF, JASRI/SPring-8, JAI-DIAMOND, KEK, LBNL, MAXLAB, NTUA, PSI-SLS, SLAC, LETL, Un. Of Creta, Un. Of Thessaloniki.

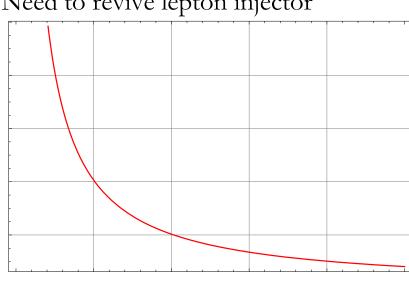
Dream Damping Ring Test Facility

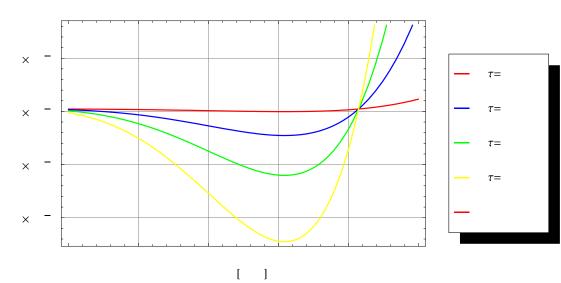
- Ring achieving lowest possible emittances in all three dimensions, in the range of few GeV
 - ☐ Vertical and longitudinal easier than horizontal
- Short bunch train structure similar to damping rings
 - □ Bunch spacing of 0.67ns (1.5GHz RF system) should be a good compromise
- Space for installing wigglers, kickers (and extraction line), vacuum test areas, RF, instrumentation
- Beam conditions for studying IBS, space-charge, low emittance tuning, e-cloud (positrons), fast ion instability, CSR...
 - ☐ High brightness single bunches/trains, small bunch length
- Available beam time for experimental tests

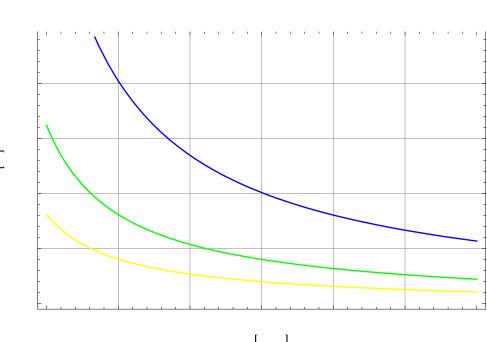
Evans and Schmidt, 1988

,					
A	8	F	G	Н	1
VARIABLES		WITH WIGGLER		Intrabeam	scattering
ETA	0.0018	brho	13.3424	ep	0.001637
YOLTS(Y)	4.00E+07	wiggler deflection	0.00356	A	3.9E-06
Q YALUE	27	Bending radius	14.04463	k	0.005958
MOMENTUM COMPAC	0.0018	2*pi*rho^2	1239.369	8	0.003439
BETA (V/C)	1	F	0.005544	d	0.997034
ENERGY DPN JE	2	Parameters With wigg		Inc2a	8.492016
RADIAL DPN JX	11	Energy loss per turn	5.51E+06	Tx(sec)	1.37E+00
ENERGY(EV)	4.00E+09	Energy damping time	1.67E-02	Tz(sec)	1.23E+02
PARTICLES/BUNCH	5.00E+09	Horizontal damping time	3.34E-02		
HORIZONTAL BETA	40	Energy spread	9.11E-04		179.3655
VERTICAL BETA	40	Synchrotron Tune	0.168447	'	85.4419
HARMONIC NUMBER	10000	Bunch length sigma	1.07E-02	2	532.8773
BWIGGLER (TESLA)	0.95	Sigmasquared/beta	3.63E-10		27.19585
Pole Length	0.05	Normalised emittance	2.84E-06	ì	179.3655
Total Wiggler Length	300	Norm long emit	7.64E-02	2	
		D 1	•1•	0044	

Already proposed as
damping ring for CLIC
and lately LHeC

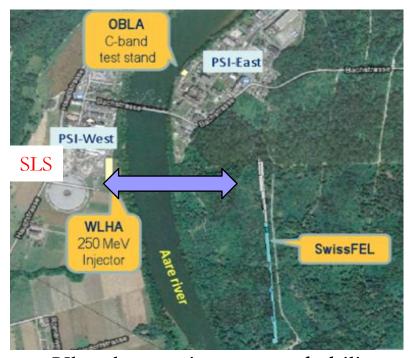

Papaphilippou 2011					
Parameter [unit]	High Rep-rate	Low Rep-rate			
Energy [GeV]	10	7			
Bunch population [10 ⁹]	1.6	1.6			
Bunch spacing [ns]	2.5	2.5			
Number of bunches/train	9221	9221			
Repetition rate [Hz]	100	10			
Damping times trans./long. [ms]	2/1	20/10			
Energy loss/turn [MeV]	230	16			
Horizontal norm. emittance [μ m]	20	100			
Optics detuning factor	80	80			
Dipole field [T]	1.8	1.8			
Dipole length [m]	0.5	0.5			
Wiggler field [T]	1.9	-			
Wiggler period [cm]	5	-			
Total wiggler length [m]	800	-			
Dipole length [m]	0.5	0.5			
Longitudinal norm. emittances [keV.m]	10	10			
Momentum compaction factor	10^{-6}	10^{-6}			
RF voltage [MV]	300	35			
rms energy spread [%]	0.20	0.17			
rms bunch length [mm]	5.2	8.8			
average power [MW]	23.6	3.6			





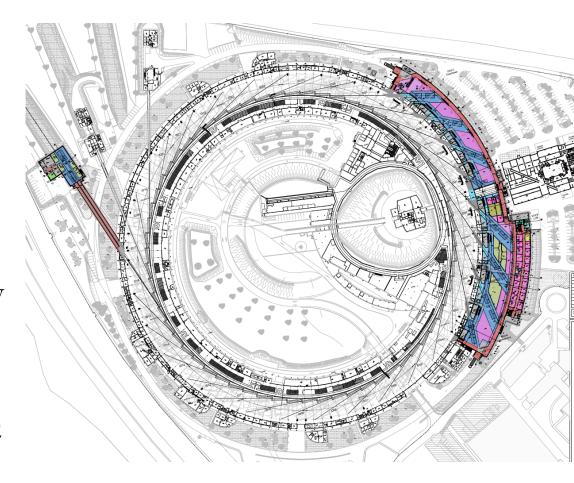
- Low energies (4-10 GeV)
- Need large number of wigglers to get low horizontal emittance and ultra-fast damping (a few tens of ms)
- For moderate damping time, only a few meters of wigglers needed
- Gain by higher cell phase advance

Need to revive lepton injector



SLS

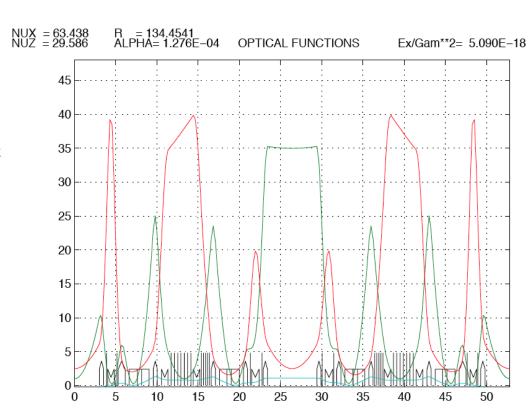
SLS Parameter	Value
Energy [GeV]	2.411
Circumference [m]	288
Energy loss/turn [MeV]	0.54
RF voltage [MV]	2.1
Mom. Comp. factor	6.05e ⁻⁴
Damping times h/v/l [ms]	8.59/8.55/4.2 6
Hor. emittance [nm rad]	5.6
Vert. emittance [pm rad]	0.9
Bunch length [mm]	3.8
0 1 3	


- Ultra-low emittances and ability to run at low energies
 - ☐ Horizontal norm. emittance of 26microns (2.4GeV) down to 5microns (1.6GeV)
 - □ Record vertical emittance of 0.9pm @ 2.4GeV (4.2nm normalized!!!). This is translated to 2.8nm normalized if established @ 1.6GeV
 - □ Bunch length of ~4mm, energy spread of 0.09% (long. norm. emittance of 7.9keV.m @ 2.4GeV)
- 1.5GHz, 3rd Harmonic cavity
- Proximity with Swiss FEL (can EAST meet WEST or 1 river to cross?)
- Very close to the dream test facility
 Y.P., BUT/2012 nly a user facility

ESRF

- 844m ring @6GeV
- Horizontal emittance of 4nm and vertical at 3.5pm delivered in 250mA
- Equipped with LIBERA BPM system capable of high resolution TBT position data
- Very high resolution X-ray monitors (using X-ray lenses)
- Development on HOM damped copper cavities @ 352.2MHz
- Already existing test area for vacuum chamber desorption studies, (collaboration with CERN vacuum group)

LCWS 2012 14

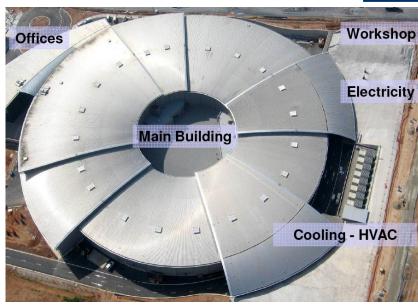


Test Facility (a) ESRF

- Reduce energy at 3GeV, i.e. reduce a factor of 8 the horizontal normalized emittance
- Change lattice (MBA, VBA,...) targeting a factor of 4 reduction in horizontal emittance (not as aggressive as actual upgrade plan)
- Use SC damping wigglers (3.5T, 40mm period, 10m) for another factor of 3 reduction in the horizontal emittance (500nm normalized, i.e.85pm geometrical @ 3GeV or 0.5nm @ 6GeV) Y.P., 25/10/2012

LCWS 2012

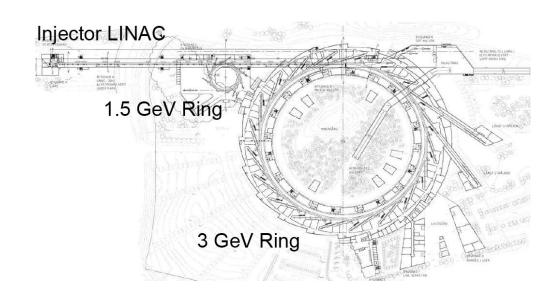
ESRF Test facility


	Nominal	Improved
Beam energy [GeV]	6.04	3
Bunch charge [10 ⁹]	4.4	4.4
Bunches/pulse	992	992
Bunch spacing [ns]	2.84	2.84
Hor. norm. emittance [nm]	47051	500
Ver. Norm. emittance [nm]	35	5
Bunch length (@ 0/nom. current) [mm]	4.4/6	2.4/3.2
Energy spread [%]	0.11	0.12
Repetition rate [Hz]	10	10
Energy loss per turn [MeV]	5.0	1.3
Total voltage [MV]	9	9
RF frequency [MHz]	352.2	352.2
Momentum compaction factor [10 ⁻⁴]	1.88	0.96
Energy acceptance [%]	3.84	12.5

ALBA

- Recently commissioned
- Horizontal emittance of 4nm (23microns normalised, vertical not yet fully op
- Ability to run at lower energies (not demonstrated)
- RF system powered with IOTs
- 3rd harmonic cavity (1.5GHz)
- Super-conducting wiggler from BINP
- Some free straight sections for installing new equipment for tests
- Not yet fully booked by users but it will come

Electron beam energy	3.0 GeV
Storage Ring Circumference	268.8 m
Number of cells	16
Symmetry	4
Straight section lengths	4 x 8.0 m
	12 x 4.4 m
Beam current	8 x 2.6 m 400 mA
Emittance	< 4 nm.rad
Lifetime	> 10 h



MAXIV

- Ultra-low horizontal emittance for 3GeV ring
 - □ 0.2nm @ 3GeV including IBS effect (1micron normalized) using high field (2.2T) PM wigglers
- A lot of fancy features
 - □ Compact magnets, multipole kicker, highfield wigglers, instrumentation
- 100MHz RF system
 - □ Long bunches of 50mm rms length using Landau cavity
- Commissioning of ring starts in 2015

Energy	3	1.5	GeV
Average Current	500	500	mA
Circumference	528	96	m
Horizontal Emittance	0.2 - 0.4	6	nm rad
# Straight Sections	20	12	
Length of Straight Section	4.8	3.5	m
Hor Beam Size	45	184	μm
Vert Beam Size	2	13	μm
Beam Lifetime	10	10	hours

ATF

IP parameter	nominal	04/2010	12/2010	02/2012
beam energy	1.3 GeV	1.3 GeV	1.3 GeV	1.3 GeV
\mathbf{E}_{x}	2 nm	1.7 nm	1.8-2.7 nm	1.84 nm
$\mathbf{\epsilon}_{\mathrm{y}}$	12 pm	<10 pm	28-64 pm	15.6 pm
β_{x}^{*}	4 mm	40 mm	10 mm	10 mm
β_y^*	0.1 mm	1.0 mm	1.0 mm	0.3 mm
σ_{x}^{*}	2.8 µm	10 μm	7.5 µm	4.3 μm
σ_{y}^{*}	35 nm	900 nm	439 (247?) nm	165 (100?) nm

- Ideal for extraction kicker studies
 - ☐ Double kicker system
- Low vertical emittance <10pm
 - ☐ A lot of beam size instrumentation
- First IBS studies
- Discussions for ATF3 damping ring experimental program combined with FF studies

CESRTA

Lattice Parameters

Ultra low emittance baseline lattice

Energy [GeV]	2.085	5.0	5.0
No. Wigglers	12	0	6
Wiggler Field [T]	1.9	_	1.9
Q_{x}	14.57		
Q _y	9.62		
Q_z	0.075	0.043	0.043
V _{RF} [MV]	8.1	8	8
ε _x [nm-rad]	2.5	60	40
$\tau_{x,y}$ [ms]	57	30	20
α_{p}	6.76×10 ⁻³	6.23×10 ⁻³	6.23×10 ⁻³
σ _I [mm]	9	9.4	15.6
σ _E /Ε [%]	0.81	0.58	0.93
t _b [ns]	≥4, steps of 2		

- Huge effort for e-cloud evaluation and mitigation
 - □ Positrons and electrons, vacuum chamber test areas
- High-field wigglers
- Variable energy, low horizontal emittance

Range of optics implemented

Beam dynamics studies Control y flux in EC experimental regions

			_
E[GeV]	Wigglers (1.9T/PM)	ε _x [nm]	
1.8	12/0	2.3	
2.085	12/0	2.5	IBS Studies
2.3	12/0	3.3	
3.0	6/0	10	
4.0	6 /0	23	
4.0	0 /0	42	
5.0	6/0	40	
5.0	0/0	60	
5.0	0/2	90	

- Low Emittance Tuning
- IBS measurements
- Instrumentation for position, beam size, e-cloud
- Future running?

Other rings to be explored

- PETRAIII
- SOLEIL
- APS
- SPRING-8
- ELETTRA
- ...

Conclusion

- A number of existing or future low emittance rings are approaching design goals of LC damping rings
- Some of them can be combined with a bunch compressor + linac for a general LC main beam test facility
- Difficulty lies less on establishing an experimental program but more on the machine availability for running such experiments