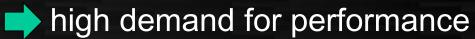
Status of LCFIPlus

Taikan Suehara, Tomohiko Tanabe (ICEPP, U. Tokyo)


Direction of LCFIPlus development

LCFIVertex The first realistic flavor tagging in ILC

- Incorporating modern flavor tagging techniques to obtain reasonable performance
- No other algorithms to be compared...
- Mainly tuned with Z-pole qqbar samples

LCFIPlus Our second version

Clear target: Higgs self-coupling to ~30%

- Focused on >=4 jet environments
- Including jet clustering (performance driver for 6-jets)
- Trying many ideas for performance improvement

LCFIPlus is more performance-driven, mainly concentrated on many-jet processes

improvement feedback

ZHH analysis

Data/process flow

EventStore singleton for data pool

vector<Vertex *> vector<Track *> vector<Jet *> vector<Neutral *> any other types vector<MCParticle *>

- Automatic type identification (Allow one name with multiple types)
- Automatic creation/deletion (using ROOT class dictionary)

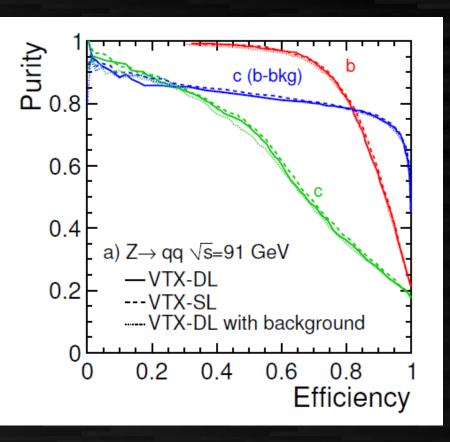
Algorithm

PrimaryVertex JetVertexRefiner BuildUpVertex FlavorTag TrainMVA JetClustering MakeNtuple ReadMVA etc.

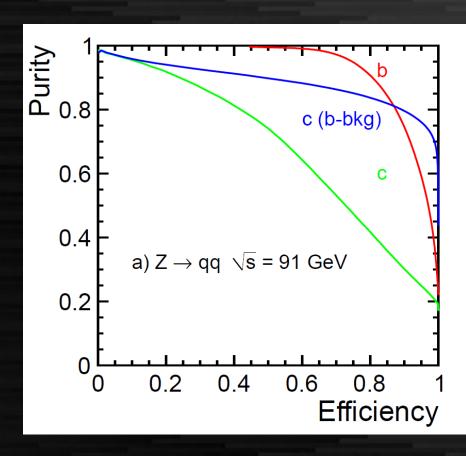
 Parameters class used for type-safe configuration All in "Icfiplus" namespace

LCIOStorer

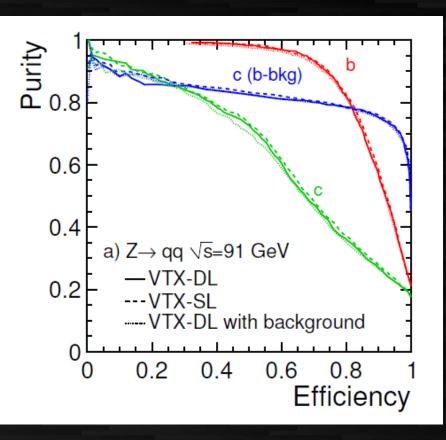
- Automatic conversion from LCIO to Icfiplus classes (using hook in EventStore)
- Conversion to LCIO is manually invoked by LcfiplusProcessor


configuration

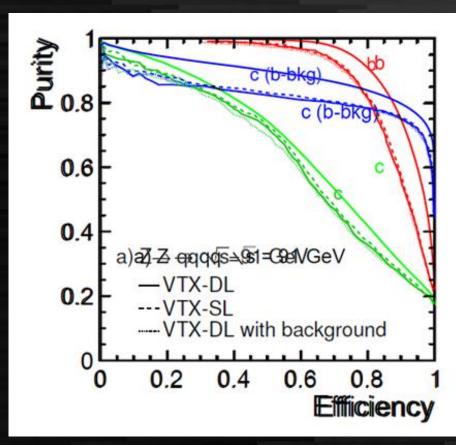
LcfiplusProcessor


- Marlin processor
- Process Marlin parameters to be passed to Algorithm
- LCIO I/O configuration

Performance: (old) LCFI vs LCFI+



LCFIVertex performance in ILD LoI



ILD_o1_v5 LCFIPlus v02 variables

Performance: (old) LCFI vs LCFI+

LCFIVertex performance in ILD LoI

ILD_o1_v5 LCFIPlus v02 variables

LCFIPlus processors

- 1. Primary vertex finder
- 2. Secondary vertex finder

DBD mass reconstruction up to here

- 3. Jet clustering

 JetClustering + JetVertexRefiner
- 4. Training MVA (can be omitted with existing weight files)
 - 1. Making ntuples
 - 2. Training
- 5. Flavor tagging

Vertex Finders

- PrimaryVertexFinder
 - tear-down with beam vertex
- BuildUpVertex
 - Secondary vertex finder with build-up method
 - V0 rejection (original code, updated)

(a) $ZHH \rightarrow qqbbbb$	Track origin			
$(a) ZIIII \rightarrow qqbbbb$	Primary	b hadron	c hadron	Other
Number of all reconstructed tracks	67575	12912	15246	4087
Number of tracks used by ZVTOP	1162	8534	10404	999
in good vertices	-	8248	10103	-
Number of tracks used by our original vertex finder	617	8717	10529	358
in good vertices	-	8551	10333	-
	l		L	
(b) tt -> bhagag		Track o	rigin	
(b) $t\bar{t} \to bbqqqq$	Primary	Track o	rigin c hadron	Other
(b) $t\bar{t} \rightarrow bbqqqq$ Number of all reconstructed tracks	Primary 74504			Other 4219
	,	b hadron	c hadron	
Number of all reconstructed tracks	74504	<i>b</i> hadron 8945	c hadron 12602	4219
Number of all reconstructed tracks Number of tracks used by ZVTOP	74504	<i>b</i> hadron 8945 5999	c hadron 12602 8353	4219

Better than LCFIVertex vertex finder in ZHH/tt sample!

Jet Clustering

- Should be used in user analysis (not included in DBD prod)
- Jet clustering with vertex information
- Various configuration possible
 - Ordinal Durham method (vertex = "0", UseMuonID = 0)
 - Durham with vertex, but no enhancement for separation of vertex-jets (YAddedForJetVertexVertex = 0, etc)
 - Durham with vertex with separation of vertex-jets (default)
 - Using jet muons as vertex (with UseMuonID = 1)
- Multiple output collections possible
 - ex. NJetsRequested = 8 6 4, (must be descending order),
 OutputJetCollectionName = Jets8 Jets6 Jets4
- Problem of enhancement of ttg->ttbb
 - Should be updated for ZHH analysis (but not soon)

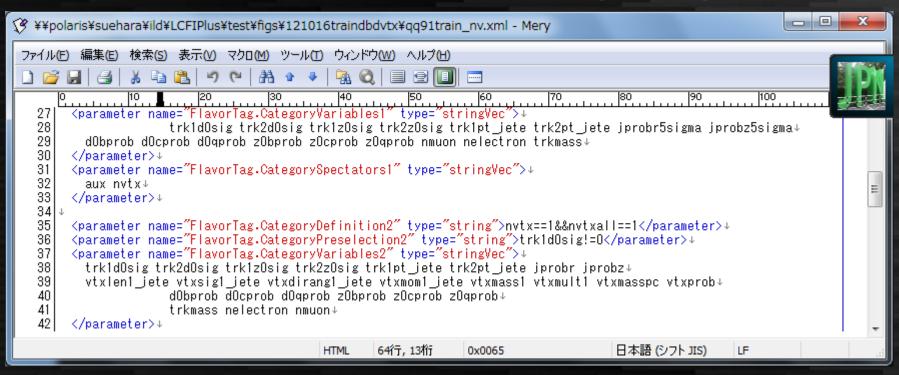
Jet Vertex Refiner

- Should be used in user analysis after jet clustering
- Consists of two algorithms
 - SingleTrackVertexFinder & VertexCombiner
- SingleTrackVertexFinder
 - reconstruct single-track vertices using existing vertex directions

 1	O	
√ertex	Com	nıner

- combine vertices into two
 at most aiming at combining multi+single vertices
 which are from same b or c tuned for b/c separation
- Jet & vertex collection are specified separately, so this can be used after other jet clustering method (Durham, anti-k_T etc.)

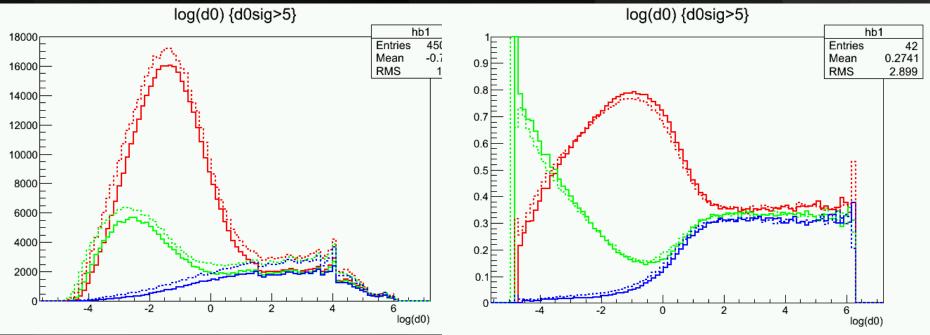
Event	1+1 vtx	2 vtx
bb	20.4%	22.2%
CC	0.73%	0.16%
qq	0.06%	0.04%


Flavor Tagging

- Based on TMVA Boosted Decision Trees
 - Four categories: #vtx = 0, 1, 1+singletrack, 2
 - Output: Category, BTag, CTag (+α) in LCIO PID
- Procedure (after jet clustering/vertex refiner)
 - 1. FlavorTag + MakeNtuple for each training sample
 - 2. TrainMVA with all ntuples (output: weight file)
 - 3. FlavorTag + ReadMVA with the weight file
 - 1 + 2 can be omitted for use of existing weight files

Standard Training Sample (ILD)

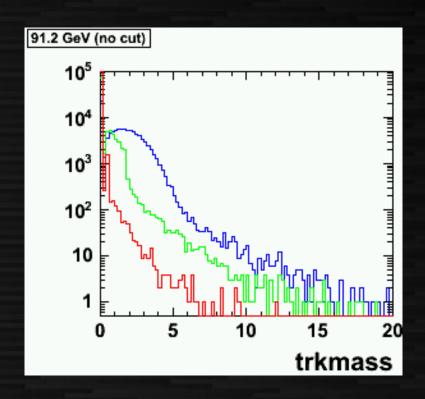
- ILDConfig/LCFIPlusConfig/Icfiweights
- qq samples (91 GeV / 250 GeV)
 - 100 kjets each
 - qq(91/250)_v(01/02)_p01
 - 1 Mjets each
 - qq91_v(01/02)_p11 (released very soon)
 - 250 GeV coming (need to run Mokka)
- 6q samples (500 GeV / 1 TeV)
 - bbbbbb/ccccc/qqqqqq, mainly from ZZZ
 - 500k/500k/1500k jets
 - 6q(500/1000)_v(01/02)_p01 (1 TeV soon)
- 4q samples planned (500 GeV / 1 TeV)

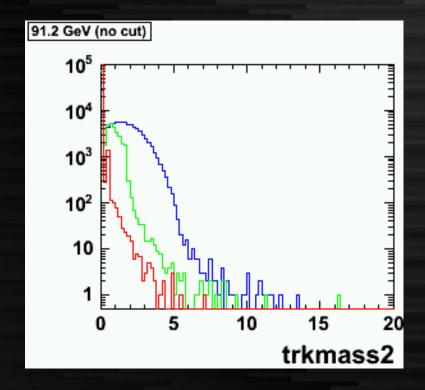

New variables (v02)

Vertex probability
(using b/c/q d0/z0 distributions in data/vtxprob/)
Mass of secondary tracks
electrons, # muons

New input variables

 product of d0/z0 b/c/q likeness over all secondary tracks (d0zig/z0sig > 5)

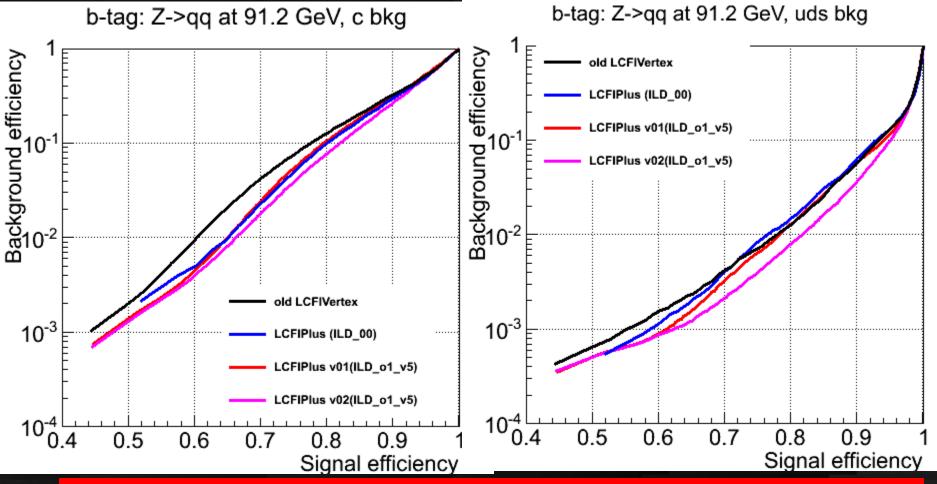



 (existing) joint probability is modified to use d0/z0sig<5 tracks only (for independency)

ROOT files in ILDConfig/LCFIPlusConfig/vtxprob/ needed: Please check the error message if you plan to use v02 variables

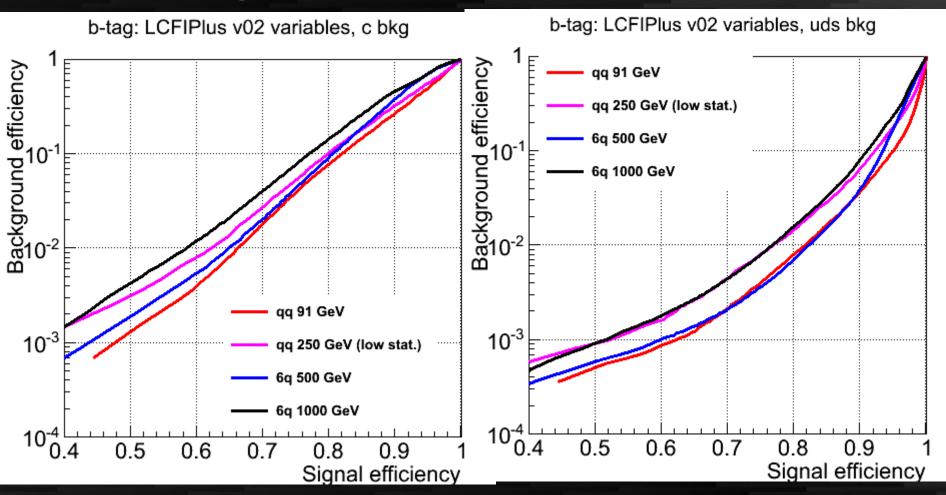
New input variables(2)

- Mass with all secondary tracks
 - loose selection: trkmass
 - tight selection: trkmass2 (currently not used)

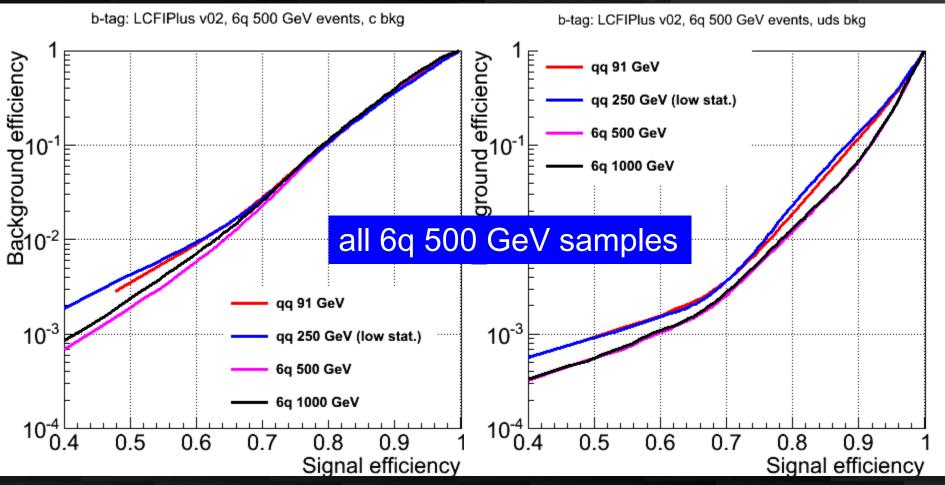


New input variables(3)

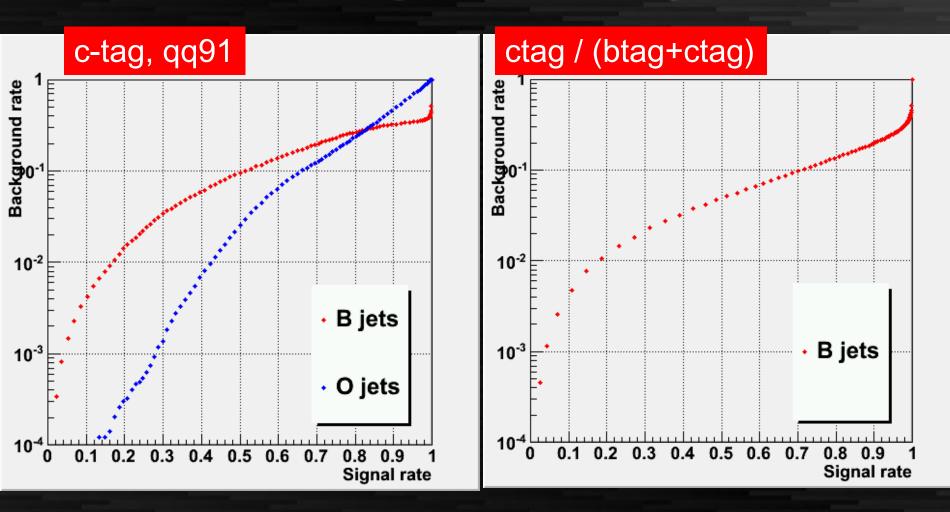
- # muons, # electrons
 - Tuned to > 3-4 GeV muons/electrons
 - require off-IP, muon hit, ECal/Hcal energy deposit
 - Efficiency (overall): ~25%(rejected leptons)
 - Energy < 3 GeV: about 60%
 - secondary cut (5 sigma): about 10%
 - Suffered from mis-PFA: about 30%
 - Electron purity decreases for larger energies


b-tag performance: Z-pole qq

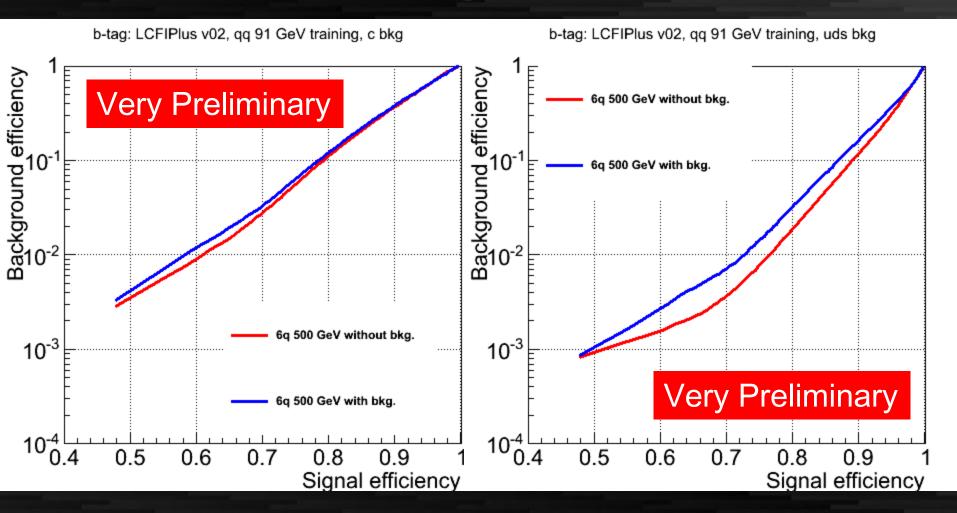
old LCFIVertex -> LCFIPlus improvement seen in all region ILD_00 & ILD_o1_v5 give similar performance v02 is better than v01 in all region: use v02!


Taikan Suehara et al., LCWS12 @ Arlington, 25 Oct. 2012 page 16

Dependence on Process


use the same process (each) for training worse in higher energy jets: need to tune v0 rejection?

Dependence on Weight Files


For selecting weight files, # of quarks affects more than energy!

C-tag vs BC-tag

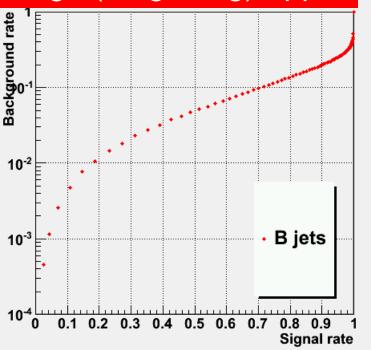
Use ctag/(btag+ctag) as previous 'bc-tag' Performance is identical to 'bc-only' training

background

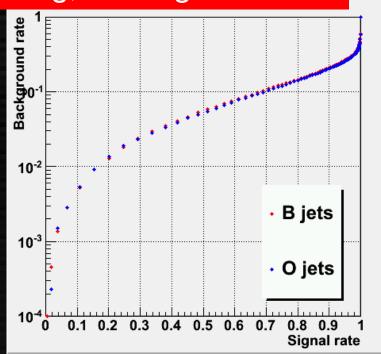
some effects on beam background seen: may need to tune...

Plans

- Short term (1-2 weeks)
 - release 6q1000, 4q, qq250 (better stat.)
 - found a minor issue in v02 will be updated
 - using ttbar for training, using MC information
 - 6-category tagging: B, C, O, BB, BC, CC
 - Code has been ready: need sanity check
 - Investigating pileup effect
- Mid term
 - Jet clustering re-optimization for ZHH
 - More variables, more performance


Summary

- LCFIPlus (almost) ready for DBD analysis
- Impressive performance improvement seen!!
- Various weight files supplied, more coming
 - number of quarks seem to be important for choosing weight file
- Use ctag/(btag+ctag) for bc-tag
- Performance of v02 is better: we encourage to use it
- Some effect of beam background seen
 - need more investigation



BC-tag??

ctag, training with b/c/b

In our sample btag + ctag + other is normalized to 1 Use ctag/(btag+ctag) as previous 'bc-tag'