Occupancies from Beam-Related Backgrounds in SiD at ILC and CLIC

Christian Grefe

CERN

25. October 2012

Detector Geometries Beam-Related Backgrounds Simulation & Digitization

2 Hit Rates

3 Occupancies

4 Conclusion

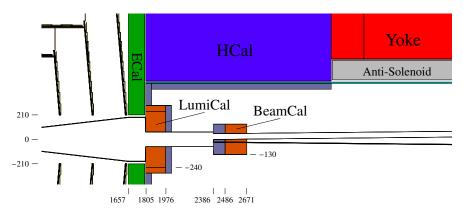
Detector Geometries Beam-Related Backgrounds Simulation & Digitization

Tracker Layout (CLIC_SiD)



Detector Geometries Beam-Related Backgrounds Simulation & Digitization

Tracker Layout (CLIC_SiD)


- Based on sidloi3
- All-silicon tracker
- Pixelized vertex detector
 - 5 barrel layers + 7 disk layers
 - $20\,\mu m$ pitch
- Main tracking detector
 - 5 barrel layers + 4 disk layers (stereo strips)
 - $25\,\mu m$ strip pitch
 - 50 μm read-out pitch
 - 100 mm strip length

Detector Geometries Beam-Related Backgrounds Simulation & Digitization

Forward Region (CLIC_SiD)

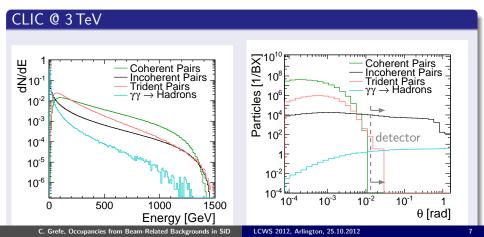
- Forward region not optimized in CLIC_SiD and sidloi3
- Beam pipe in very forward region not conical

Detector Geometries Beam-Related Backgrounds Simulation & Digitization

Differences between sidloi3 and CLIC_SiD

• Vertex Detector

- Inner radius: $1.4 \,\mathrm{mm} \Rightarrow 2.7 \,\mathrm{mm}$
- Half length: $60 \,\mathrm{mm} \Rightarrow 100 \,\mathrm{mm}$
- Disk placement
- Forward region
 - Crossing angle: $14 \operatorname{mrad} \Rightarrow 20 \operatorname{mrad}$
 - LumiCal position and radius
 - BeamCal position and radius
 - Larger support tube for QD0 at CLIC (r = 50 mm)
- Beam pipe
 - Conical part pointing in CLIC_SiD, increased thickness to 4 mm



Detector Geometries Beam-Related Backgrounds Simulation & Digitization

Beam-Related Backgrounds

- Coherent pairs almost co-linear
- Determine opening in forward calorimeters and crossing angle
- $\bullet\,$ Only incoherent pairs and $\gamma\gamma\to$ hadrons relevant to central detector
- Solenoid field confines (charged) particles at low radii

Detector Geometries Beam-Related Backgrounds Simulation & Digitization

Background Samples

- \bullet Incoherent pair samples generated by $\operatorname{GUINEAPIG}$
- $\gamma\gamma \rightarrow$ hadrons generated by WHIZARD (photon spectrum from GUINEAPIG)
- Hadronization of $\gamma\gamma \rightarrow$ hadrons in PYTHIA
- Studied beam configurations with highest occupancies
 - ILC DBD @ 1 TeV
 - CLIC CDR @ 3 TeV

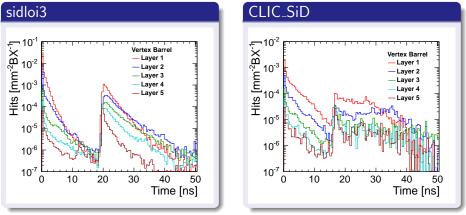
Detector Geometries Beam-Related Backgrounds Simulation & Digitization

Simulation & Digitization

- Full detector simulation using SLIC ($\operatorname{GEANT4})$
 - Incoherent pairs: single particle per simulated event ILC: \sim 400k / BX, CLIC: \sim 300k / BX
 - $\gamma\gamma \rightarrow$ hadrons: one interaction per event ILC: 4.1 / BX, CLIC: 3.2 / BX
- Merge events to represent 1 BX in org.lcsim
 - Dedicated driver in org.lcsim creating deep copies of merged objects to allow efficient garbage collection
- Run standard tracker hit digitization in org.lcsim (SiSim)
- Nearest neighbor clustering to form TrackerHits

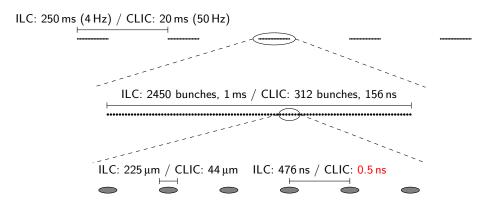
Hit Time Structure

2 Hit Rates


3 Occupancies

4 Conclusion

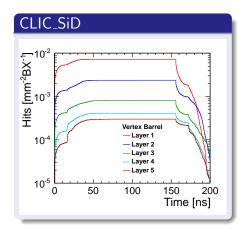
Hit Time Structure


Hit Time Structure (Incoherent Pairs)

- Back-scattered particles create indirect hits
- Time delay given by time of flight from the IP to the BeamCal
- Less pronounced in CLIC_SiD due to thicker conical beam pipe

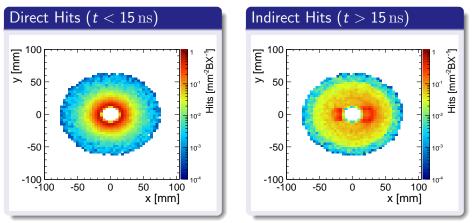
Hit Time Structure

Beam Structure at ILC (1 TeV) and CLIC (3 TeV)



Hit Time Structure

Hit Time Structure in (Incoherent Pairs)


- Back-scatters dominating contribution from incoherent pairs at CLIC
- Conical beam pipe can be used to shield inner detector
 - 4 mm steel in CLIC_SiD
- Careful design of forward region more important at CLIC
- Detailed studies of forward region layout still to be done (have been performed in CLIC_ILD)

Hit Time Structure

Direct and Indirect Hits (sidloi3 Vertex Disk)

- Back-scattered particles not symmetric in ϕ
- Hot spots projection of openings in BeamCal

Cluster Sizes Vertex Detector Main Tracker

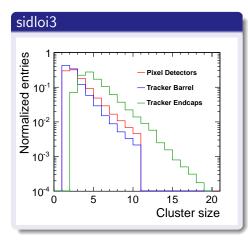
2 Hit Rates

4 Conclusion

Cluster Sizes Vertex Detector Main Tracker

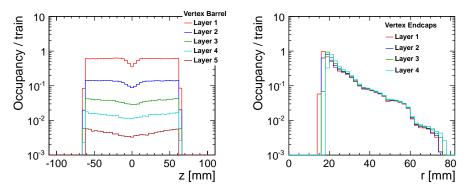
Occupancy Estimation

- Start from hit rates
- Take into account segmentation
- Take into account average cluster size
- Assume reading out full train (2450 BX / 312 BX)
- Add safety factors
 - Incoherent pairs: 5 (large uncertainty in amount of back scatters)
 - $\gamma\gamma
 ightarrow$ hadrons: 2
- Digitized single BX: underestimate ghost hits in stereo strips



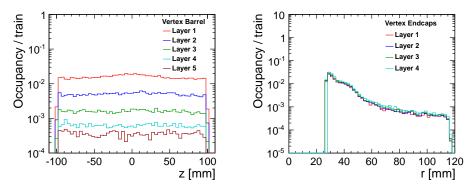
Cluster Sizes Vertex Detector Main Tracker

Cluster Sizes


- Pixel detectors: 3.0
- Strip detectors: 2.6
- Stereo strip: 5.2 (two strips hit)

Cluster Sizes Vertex Detector Main Tracker

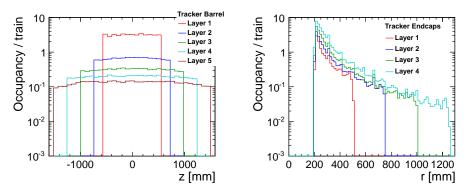
Vertex Detector (sidloi3, Incoherent Pairs)



• Occupancies reach up to 100% over full train

Cluster Sizes Vertex Detector Main Tracker

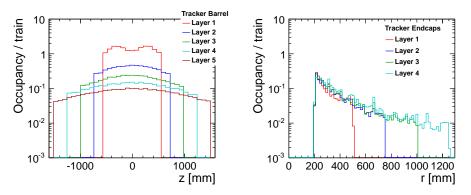
Vertex Detector (CLIC_SiD, Incoherent Pairs)



• Occupancies reach up to 3% over full train

Cluster Sizes Vertex Detector Main Tracker

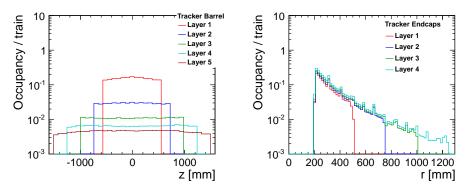
Main Tracker (sidloi3, Incoherent Pairs)



- Occupancies reach up to 300% in strip detectors
- Occupancies reach up to 900% in stereo strip detectors

Cluster Sizes Vertex Detector Main Tracker

Main Tracker (CLIC_SiD, Incoherent Pairs)



- Occupancies reach up to 200% in strip detectors
- Occupancies reach up to 30% in stereo strip detectors
- Thick conical beam pipe effectively reduces amount of back-scatters in inner detector

Cluster Sizes Vertex Detector Main Tracker

Main Tracker (CLIC_SiD, $\gamma\gamma \rightarrow$ hadrons)

- Occupancies reach up to 20% in strip detectors
- Occupancies reach up to 30% in stereo strip detectors
- Only problematic in endcap region

2 Hit Rates

Occupancies

Conclusion and Outlook

- Occupancies in central detectors are challenging at ILC and CLIC
- Innermost barrel strip layer most critical
 - Multi-hit capability
 - Shorter strips
 - Read out multiple times per train at ILC
- Stereo strip detectors at low radii problematic
- Pixel detector occupancies critical at ILC (if reading once per train)
- Optimization studies of forward region and beam pipe required to reduce amount of back scattered particles

