

Framework

LC Detector Full Simulation

SLIC

- Simulator for the Llnear Collider
- Full detector simulation
 - 4 PI detectors
 - test beams
 - other custom detector setups
- Integration
 - Geant4
 - GDML / LCDD
 - HEP PDT
 - LCIO
 - StdHep
- Minimal runtime dependencies
 - No database
 - No user code for geometry description

Recent Features Added to SLIC

- Full 3D magnetic field map support
 Grid => (x, y, z, Bx, By, Bz)
- Option to store step information for all energy depositions in CalorimeterHits.
 - Turn on via macro option.
 - Useful for detailed analysis of detector reponse
- Z smearing of generated event vertices

 Gaussian smearing
- Geant4 version was updated to 9.5.1
- LCIO version updated to 2.0

SimDist

- Since compiling SLIC from scratch is complicated, a build kit is provided.
- Based on well-worn and understood GNU tools

 Autoconf, Make, GCC, etc.
- Works on many flavors of Linux, OSX
 Windows support is deprecated.
- Options for different run modes
 - visualization
 - debugging
 - batch
- Binaries distributed on Icsim.org

Geant4

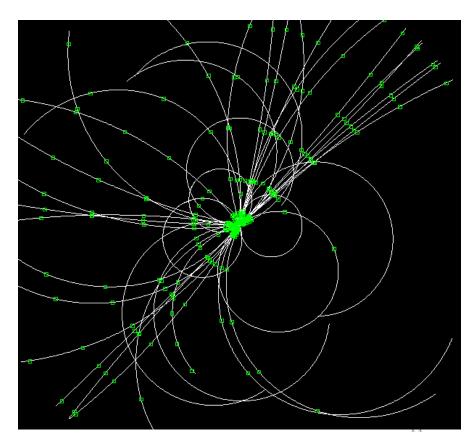
- "Geometry and Tracking"
- Standard HEP toolkit for detector simulation
- Features
 - extensive and flexible physics process library
 - visualization
 - detailed and flexible geometry description
 - macro commands
- Advertised as a "toolkit" so need to put the pieces together to build your own app

LCIO

- Linear Collider IO
- Implementations in C++, Java, Python, FORTRAN
- Supported throughout ALCPG tool chain
- Physics object interfaces

 hits/digits, tracks, particles, etc.
- Allows data interchange between apps/frameworks
 - This has been very successful! (SiD LOI, DBD)
 - Can even read your LCIO files into ROOT. (built-in support)
- See other talk(s) at this workshop for more details

GDML & LCDD


- XML geometry description
 - avoid completely user-defined geometry in code
- GDML
 - constants and definitions
 - materials
 - shapes
 - volumes
 - hierarchical geometry structure
- LCDD
 - sensitive detectors
 - identifiers
 - magnetic fields
 - visualization
 - physics limits
 - regions

GeomConverter

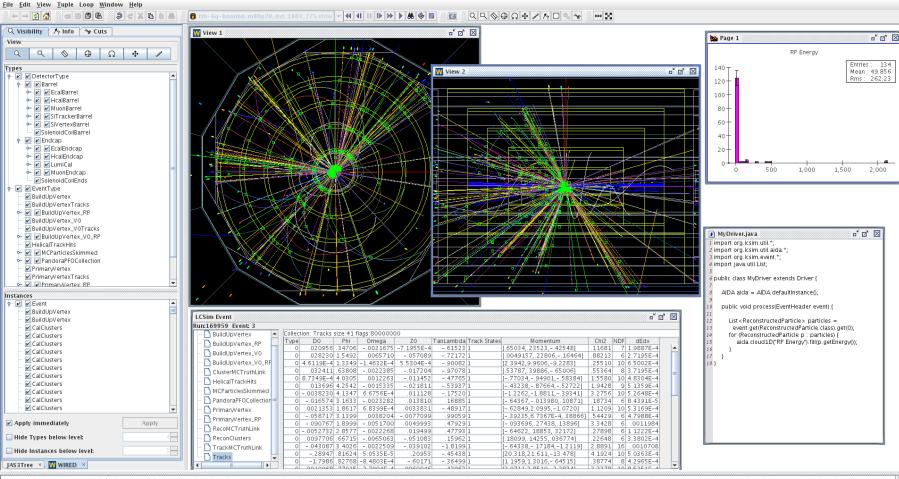
- LCDD is too low-level for most users to hand code.
- Compact description provided for writing a high-level description of the geometry.
 - detector names, number of layers, layer thicknesses/materials, readout identifiers, B-fields
- Java program converts from compact to different formats.
 - LCDD
 - HepRep
 - Runtime Geometry (Java objects)
 - XML for Pandora
 - HTML
 - <u>http://www.lcsim.org/detectors/sidloi3.html</u>
 - SVG (experimental)
- Focus on data formats as different applications have different required levels of detail
- Data interchange

LCSim

- Fully featured application framework for HEP analysis and reconstruction
- Written in Java
 - No more seg faults or mysterious memory leaks!
- Tracking
 - digitization
 - finding and fitting
- PFA
 - clustering
 - track/cluster association
- Analysis
 - jet finding, cluster finding, vertexing

slicPandora

- Interface from SLIC to PandoraPFA
 - But not actually limited to SLIC input; could accept any LCIO file with hits + tracks.
- LCIO compatible
 - read hits, tracks
 - write reconstructed particles
- XML geometry description generated by GeomConverter
- Used extensively for SiD LOI


AIDA

- Abstract Interfaces for Data Analysis
- Analysis classes
 - 1, 2, & 3D Histograms + Clouds
 - 1 & 2D Profiles
 - DataPointSet
 - Tuples
- Java implementation
 - Other impl. exist in Python & C++
- compressed XML file format
- Readable in JAS

JAS & Wired

- Java Analysis Studio
- Workbench
 - Wired event display
 - LCSim Event Browser
 - view/edit AIDA files
 - Load analysis drivers
 - Simple code editing
- Plugin architecture
 - extensible by writing loadable code modules

Analysis Session

1:48:34 PM ----- compile successful

Click to zoom in, Shift-Click to zoom out, Drag inward or outward to instant zoom.

260.2/365.8MB

Info panel

Who uses LCSim Framework?

- SiD
 - LOI
 - DBD (ongoing)
- CLiC
 - CDR
 - CERN-based SiD studies
- Muon Collider
 - work ongoing
- HPS
 - Heavy Photon Search experiment at JLAB
- Dual Readout Calorimetry
 - FNAL

Summary

- ALCPG software framework is mature, robust and well-tested.
- Supports standard ILC IO formats and applications
- Used for multiple rounds of iterative detector studies by different physics groups
- If you would like to use the framework, please contact us. New comers welcome.

Links

- Wiki <u>http://confluence.slac.stanford.edu/display/ilc/Home</u>
- lcsim.org <u>http://www.lcsim.org</u>
- ILC Forum <u>http://forum.linearcollider.org</u>
- LCIO <u>http://lcio.desy.de</u>
- SLIC <u>http://www.lcsim.org/software/slic</u>
- LCDD <u>http://www.lcsim.org/software/lcdd</u>
- JAS3 <u>http://jas.freehep.org/jas3</u>
- AIDA <u>http://aida.freehep.org</u>
- WIRED <u>http://wired.freehep.org</u>