Conventional Source for ILC (300Hz Linac scheme and the cost)

Junji Urakawa , KEK LCWS2012

Contents :

- **0.** Short review of 300Hz conventional positron source
- **1. 300Hz Linac Scheme for Beam Loading Compensation 2. Cost**
- 3. Plan for beam loading compensation experiment at ATF

0. Short review of 300Hz conventional positron source

From T. Omori et al. / NIMA 672 (2012) 52–56 The baseline choice of the ILC positron source is the helical undulator scheme. After accelerating the electron beam in the main linac, it passes a 150 m long helical undulator to create a circularly polarized photon beam, and goes to the interaction point. The photon beam hits the production target and generates electron–positron pairs. The positrons are captured, accelerated to 5 GeV, damped, and then accelerated to the collision energy in the main linac. Thus the undulator based positron generation gives interconnection to nearly all sub-systems of the ILC.

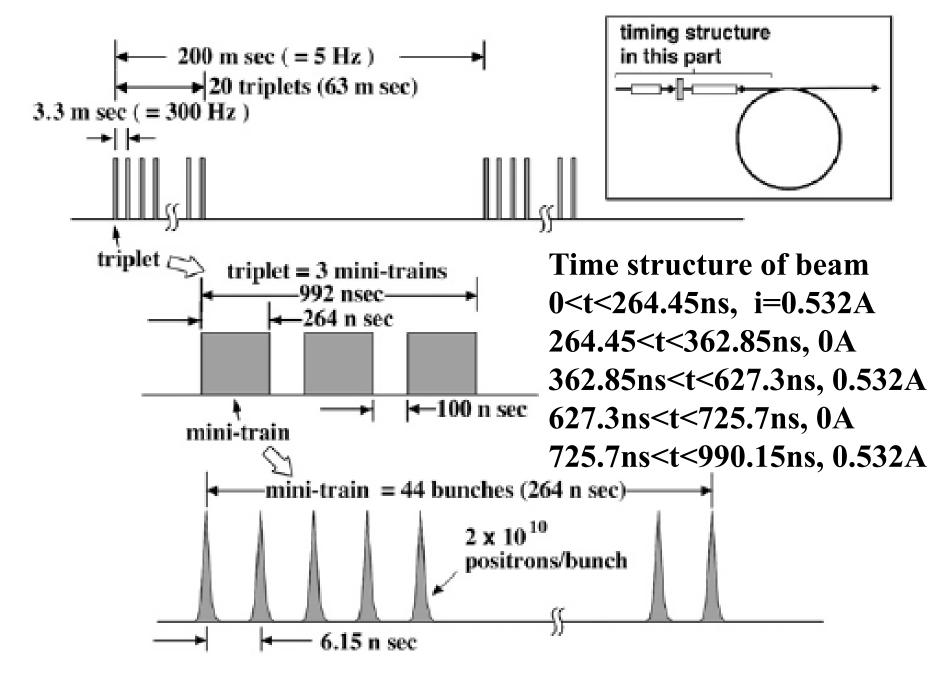
The proposed ILC positron source contains risks only in the target area. As for the conventional positron source, we concentrate to cure these risks in two ways:

(1) pulse stretching by 300 Hz generation; the proposed scheme creates 2600 bunches in about 60 ms, and

(2) optimized drive beam and target thickness parameters.

Following design is the backup for proposed ILC positron source.

Fig. 1. Schematic view of the 300 Hz scheme.



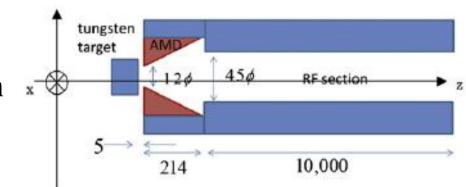
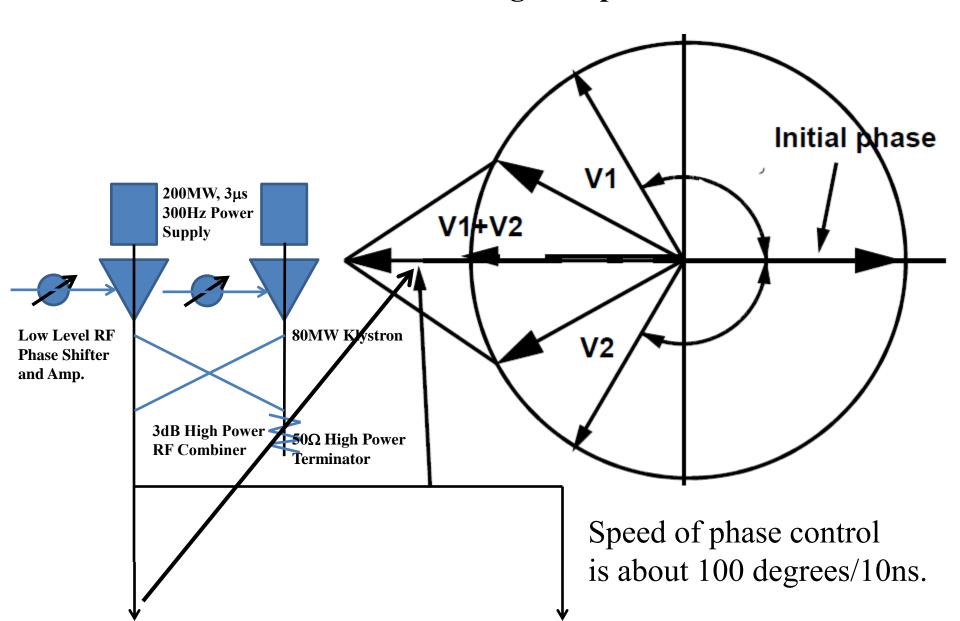
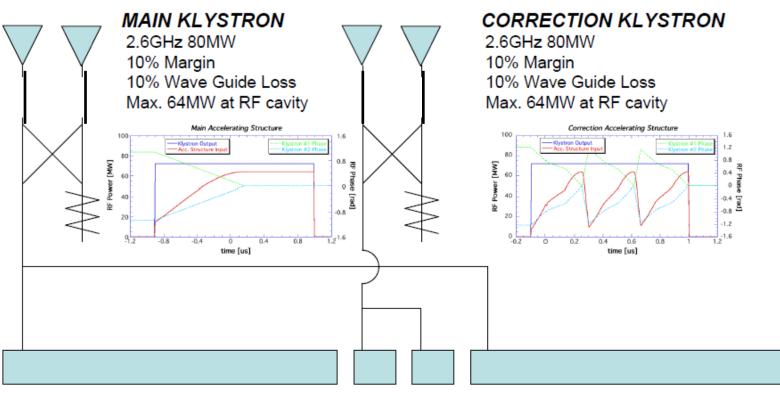


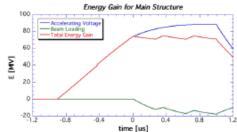
Fig. 2. Timing structure in the positron source and in the booster linac.


This is the model for positron target system to confirm the generation of ILC positron beam.

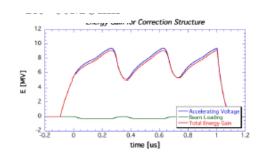

Abstract of the paper.

A possible solution to realize a conventional positron source driven by a several-GeV electron beam for the International Linear **Collider is proposed. A 300 Hz electron linac is employed to create** positrons with stretching pulse length in order to cure target thermal load. ILC requires about 2600 bunches in a train which pulse length is 1 ms. Each pulse of the 300 Hz linac creates about 130 bunches, then 2600 bunches are created in 63 ms. Optimized parameters such as drive beam energy, beam size, and target thickness, are discussed assuming a L-band capture system to maximize the capture efficiency and to mitigate the target thermal load. A slow rotating tungsten disk is employed as positron generation target.

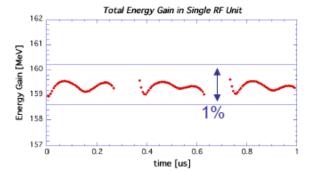
Phase to Amplitude Modulation Method for Beam Loading Compensation

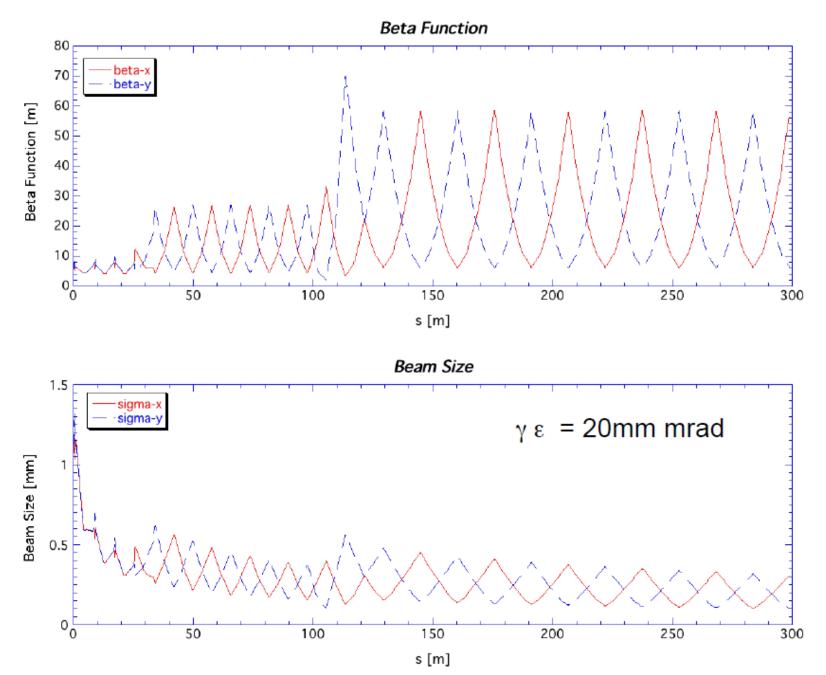


Concept Design of Single RF Unit (Nb=2e10) One accelerator unit for 6GeV Electron Drive Linac



Main RF Cavity


L=3.00m (2.6GHz) tf=906ns Q0=13000 r0=60MOhm

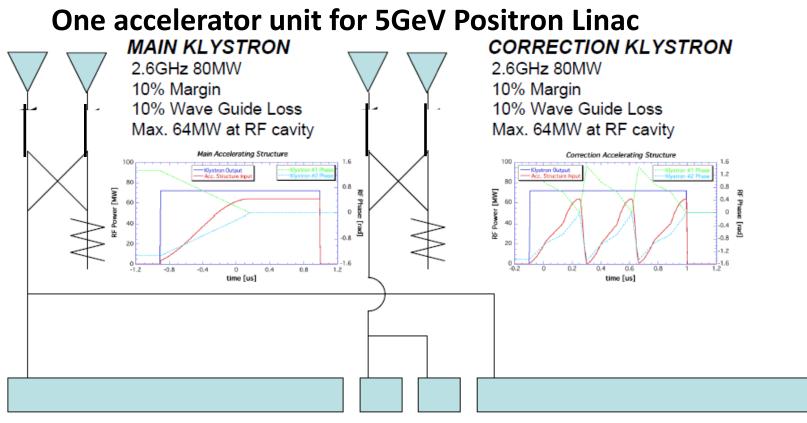

Correction RF Cavity L=0.33m (2.6GHz) tf=96ns

Total Energy Gain in 1 Unit 159.3MeV

Beam Optics Design for 6GeV Linac (Nb=2e10)

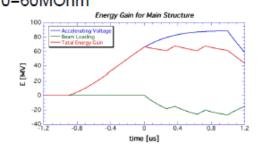
Device List for 6 GeV Linac (Nb=2e10)

Magnet List

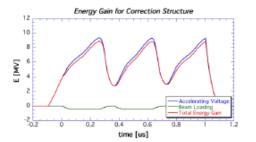

35 quads 27 horizontal steerings 27 vertical steerings

Magnet Name	Effective Length [m]	dB/dx [T/m]
Q01.1	0.1	1.3332
Q02	0.1	-2.6201
Q01.2	0.1	1.3332
Q03.1	0.1	6.0686
Q04	0.1	-11.9069
Q03.2	0.1	6.0686
Q05.1	0.1	11.1410
Q06	0.1	-21.8199
Q05.2	0.1	11.1410
Q07	0.1	-13.9861
Q08	0.1	14.5026
Q09	0.1	11.9981
Q10	0.1	-14.1085
Q11.1	0.1	5.0587
Q12.1	0.1	-6.0110
Q11.2	0.1	6.9631
Q12.2	0.1	-7.9155
Q11.3	0.1	8.8675
Q12.3	0.1	-9.8199
Q11.4	0.1	10.7720
Q13	0.1	-14.7304
Q14	0.1	13.3063
Q15	0.1	-12.6623
Q16	0.1	14.5968
Q17.1	0.1	-9.1552
Q18.1	0.1	10.2777
Q17.2	0.1	-11.4002
Q18.2	0.1	12.5226
Q17.3	0.1	-13.6451
Q18.3	0.1	14.7676
Q17.4	0.1	-15.8901
Q18.4	0.1	17.0125
Q17.5	0.1	-18.1350
Q18.5	0.1	19.2575
Q17.6	0.1	-20.3800

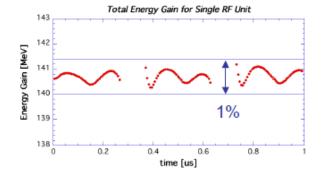
RF section

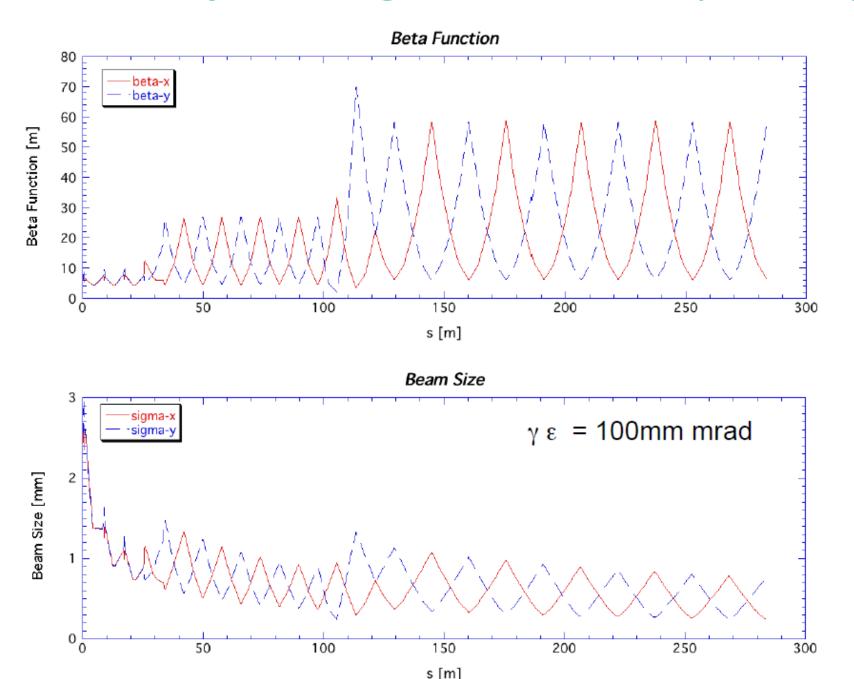

RF Unit Maximum Accelerating Volatage (80MW Klystron Output) Nominal Accelerating Voltage	170MV	
(72MW Klystron Output)	159.3MV	
Number of Unit	38	
Nominal Accelerating Voltage	6.05GeV	

Concept Design of Single RF Unit (Nb=3e10)



Main RF Cavity


L=3.00m (2.6GHz) tf=906ns Q0=13000 r0=60MOhm


Correction RF Cavity L=0.33m (2.6GHz) tf=96ns

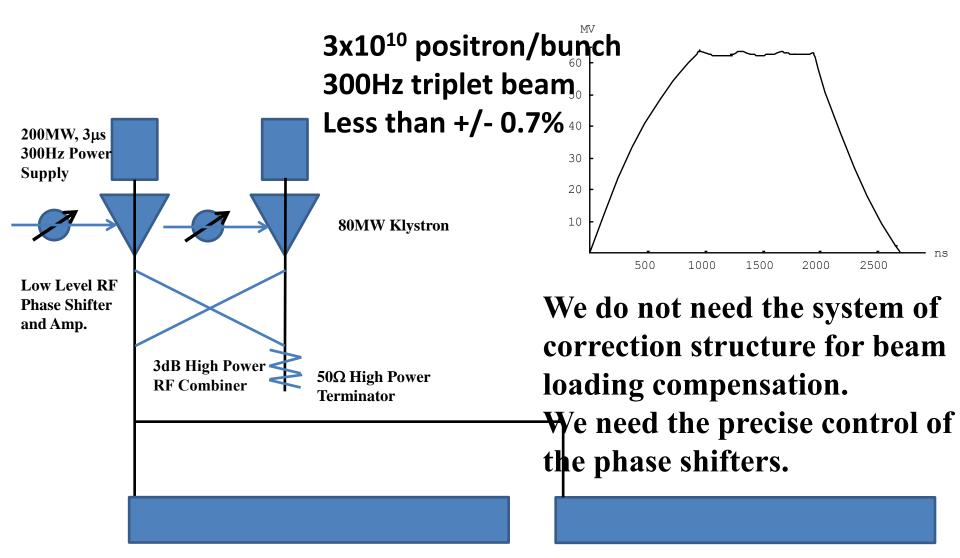
Total Energy Gain in 1 Unit 140.6MeV

Beam Optics Design for 5GeV Linac (Nb=3e10)

Device List for 5 GeV Linac (Nb=3e10)

Magnet List

34 quads 26 horizontal steerings 26 vertical steerings


Magnet Name	Effective Length [m]	dB/dx [T/m]
Q01.1	0.1	1.3391
Q02	0.1	-2.6322
Q01.2	0.1	1.3391
Q03.1	0.1	5.5491
Q04	0.1	-10.8851
Q03.2	0.1	5.5491
Q05.1	0.1	10.0016
Q06	0.1	-19.5879
Q05.2	0.1	10.0016
Q07	0.1	-12.4680
Q08	0.1	12.9311
Q09	0.1	10.6418
Q10	0.1	-12.5256
Q11.1	0.1	4.4933
Q12.1	0.1	-5.3325
Q11.2	0.1	6.1716
Q12.2	0.1	-7.0108
Q11.3	0.1	7.8498
Q12.3	0.1	-8.6892
Q11.4	0.1	9.5281
Q13	0.1	-13.0255
Q14	0.1	11.7631
Q15	0.1	-11.1916
Q16	0.1	12.8989
Q17.1	0.1	-8.0889
Q18.1	0.1	9.0780
Q17.2	0.1	-10.0672
Q18.2	0.1	11.0564
Q17.3	0.1	-12.0456
Q18.3	0.1	13.0348
Q17.4	0.1	-14.0239
Q18.4	0.1	15.0131
Q17.5	0.1	-16.0023
Q18.5	0.1	16.9915

RF section

RF Unit Maximum Accelerating Volatage (80MW Klystron Output) Nominal Accelerating Voltage (72MW Klystron Output)	148MV 140.6MV	
Number of Unit	36	
Nominal Accelerating Voltage	5.06GeV	

6GeV Drive Linac with 2x10E10 e/bunch 38 RF units	unit :M¥	5GeV Positron Linac with 3x10E10 e/bunch 36 RF units	unit :M¥
2 main klystrons x 38 with 10% margin and 10% loss	0	2 main klystrons x 36 with 10% margin and 10% loss	0
2.6GHz 64MW at RF cavity, total 76 Klystrons	1748	2.6GHz 64MW at RF cavity, total 72 Klystrons	1656
number of 3m long cavities, total 76 structures	1157	number of 3m long cavities, total 72 structures	1096
2 phase shifters x 38, total 76 phase shifters	38	2 phase shifters x 36, total 72 phase shifters	36
HP combinor x 38	130	HP combinor x 36	120
3dB divider x 38	70	3dB divider x 36	66
waveguide x 38	20	waveguide x 36	20
2 modulators x 38, total 76 modulators	3952	2 modulators x 36, total 72 modulators	3744
Computor Control Unit x 38	30	Computor Control Unit x 36	30
2 correction klystrons x 38 with 10% margin and 10% loss	0	2 correction klystrons x 36 with 10% margin and 10% lc	0
2.6GHz 64MW at RF cavity, total 76 Klystrons	1748	2.6GHz 64MW at RF cavity, total 72 Klystrons	1656
number of 0.33m long cavities, total 76 structures	468	number of 0.33m long cavities, total 72 structures	443
2 phase shifters x 38, total 76 phase shifters	38	2 phase shifters x 36, total 72 phase shifters	36
HP combinor x 38	130	HP combinor x 36	120
3dB divider x 38	70	3dB divider x 36	66
waveguide x 38	20	waveguide x 36	20
2 modulators x 38, total 76 modulators	3952	2 modulators x 36, total 72 modulators	3744
Computor Control Unit x 38	30	Computor Control Unit x 36	30
35 quads	35	34 quads	34
27 horizontal steerings	10	26 horizontal steerings	10
27 vertical steerings	10	26 vertical steerings	10
power supplies for magnets	50	power supplies for magnets	50
beam monitor devices	50	beam monitor devices	50
	13756		13037

Total **26793MYen** for 6GeV and 5GeV S-band 300Hz Linac

3m long constant gradient travelling wave structure

Also, I am researching the time structure of RF power feeding to increase energy gain and decided 20% of the margin +wave guide loss is too much and we can reduce it to 10% because of the experience at ATF Linac.

6GeV Drive Linac with 2x10E10 e/bunch	unit :M¥	5GeV Positron Linac with 3x10E10 e/bunch	unit :M¥
38 RF units		36 RF units	
2 main klystrons x 38 with 10% margin and 10% loss	0	2 main klystrons x 36 with 10% margin and 10% loss	0
2.6GHz 64MW at RF cavity, total 76 Klystrons	1748	2.6GHz 64MW at RF cavity, total 72 Klystrons	1656
number of 3m long cavities, total 76 structures	1157	number of 3m long cavities, total 72 structures	1096
2 phase shifters x 38, total 76 phase shifters	38	2 phase shifters x 36, total 72 phase shifters	36
HP combinor x 38	130	HP combinor x 36	120
3dB divider x 38	70	3dB divider x 36	66
waveguide x 38	20	waveguide x 36	20
2 modulators x 38, total 76 modulators	3952	2 modulators x 36, total 72 modulators	3744
Computor Control Unit x 38	30	Computor Control Unit x 36	30
2 correction klystrons x 38 with 10% margin and 10% loss	0	2 correction klystrons x 36 with 10% margin and 10% loss	0
2.6GHz 64MW at RF cavity, total 76 Klystrons	1748	2.6GHz 64MW at RF cavity, total 72 Klystrons	1656
number of 0.33m long cavities, total 76 structures	468	number of 0.33m long cavities, total 72 structures	443
2 phase shifters x 38, total 76 phase shifters	38	2 phase shifters x 36, total 72 phase shifters	36
HP combinor x 38	130	HP combinor x 36	120
3dB divider x 38	70	3dB divider x 36	66
waveguide x 38	20	waveguide x 36	20
2 modulators x 38, total 76 modulators	3952	2 modulators x 36, total 72 modulators	3744
Computor Control Unit x 38	30	Computor Control Unit x 36	30
35 quads	35	34 quads	34
27 horizontal steerings	10	26 horizontal steerings	10
27 vertical steerings	10	26 vertical steerings	10
power supplies for magnets	50	power supplies for magnets	50
beam monitor devices	50	beam monitor devices	50
	13756		13037

26793M\-12571M\=14222M\, which is 142 Oku-Yen for 300Hz 6GeV Drive Linac and 5GeV positron Linac.

6GeV Drive Linac with 2x10¹⁰ electrons/bunch 38 RF units

2 main klystrons (x 38) with 10% margin and 10% lo	DSS
2.6GHz 64MW at RF cavity (total 76 klystrons)	17
number of 3m-long cavities (total 76 structures)	11
2 phase shifters (x 38, total 76 phase shifters)	3
HP combinor (x 38)	13
3dB divider (x 38)	7(
waveguide (x 38)	20
2 modulators (x 38, total 76 modulators)	395
Computor Control Unit (x 38)	3

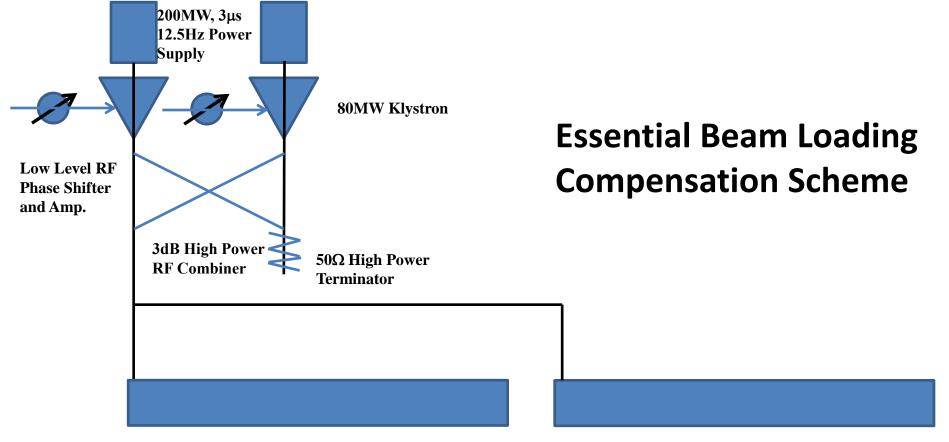
2 correction klystrons x 38 with 10% margin and 10% loss
2.6GHz 64MW at RF cavity (total 76 Klystrons) 1748
number of 0.33m long cavities (total 76 structures) 468
2 phase shifters (x 38, total 76 phase shifters) 38
HP combinor (x 38) 130
3dB divider (x 38) 70
waveguide (x 38) 6456 saved 20
2 modulators (x 38, total 76 modulators) 3952
Computor Control Unit (x 38) 30

1748		
1157		
38	35 quads	35
130	27 horizontal steerings	10
70	27 vertical steerings	10
20	power supplies for magnets	50
952	beam monitor devices	50
30		

total 13756

26793M\-12571M\= 14222M\, which is 142 Oku-Yen for 300Hz 6GeV Drive Linac and 5GeV positron Linac.

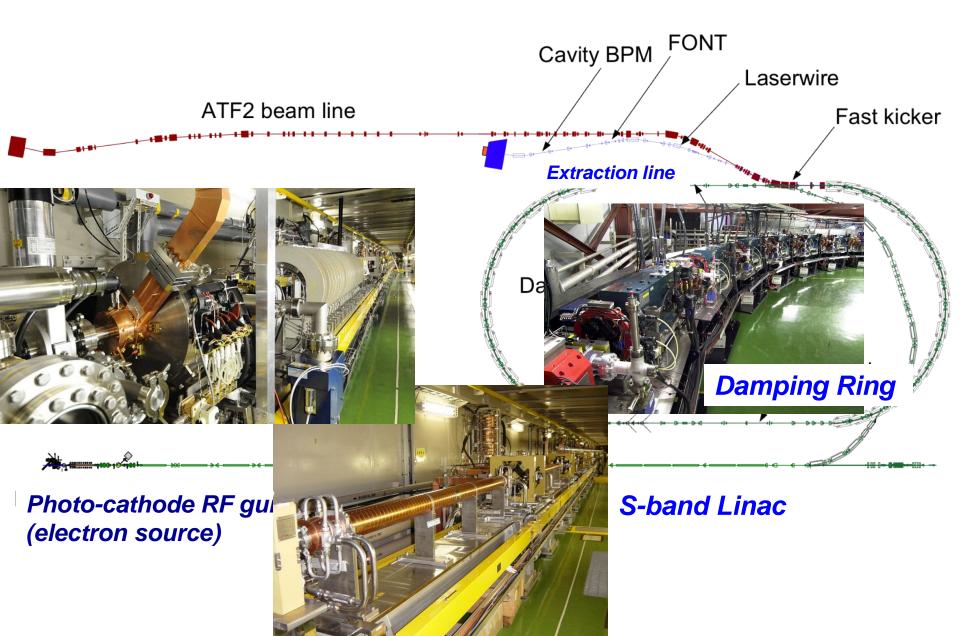
5GeV Positron Linac with 3x10¹⁰ positrons/bunch 36 RF units

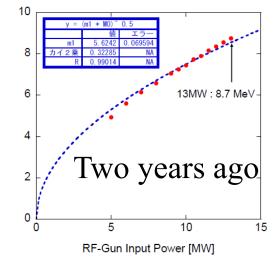

2 main klystrons x 36 with 10% margin and 10% lo	SS
2.6GHz 64MW at RF cavity (total 72 Klystrons)	1656
number of 3m long cavities (total 72 structures)	1096
2 phase shifters (x 36, total 72 phase shifters)	36
HP combinor (x 36)	120
3dB divider (x 36)	66
waveguide (x 36)	20
2 modulators (x 36, total 72 modulators)	3744
Computor Control Unit (x 36)	30
•	

2 correction klystrons x 36 with 10% margin and 10% loss
2.6GHz 64MW at RF cavity (total 72 Klystrons) 1656
number of 0.33m long cavities (total 72 structures) 443
2 phase shifters (x 36, total 72 phase shifters) 36
HP combinor (x 36) 120
3dB divider (x 36) 66
waveguide (x 36) 6115 saved 20
2 modulators (x 36, total 72 modulators) 3744
Computor Control Unit (x 36) 30

,		
6	34 quads	34
6	26 horizontal steerings	10
0	26 vertical steerings	10
6	power supplies for magnets	50
0	beam monitor devices	50
4		

total 13037

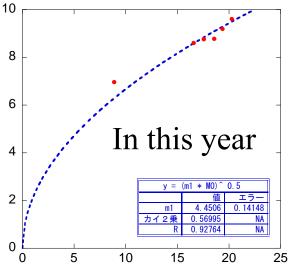

26793M\-12571M\= 14222M\, which is 142 Oku-Yen for 300Hz 6GeV Drive Linac and 5GeV positron Linac.



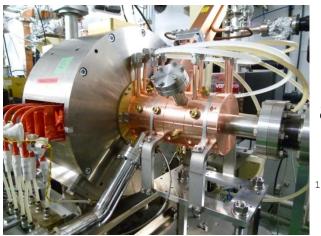
3m long constant gradient travelling wave structure

3m long constant gradient travelling wave structure

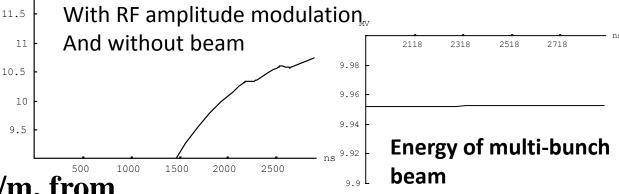
Plan for beam loading compensation experiment at ATF

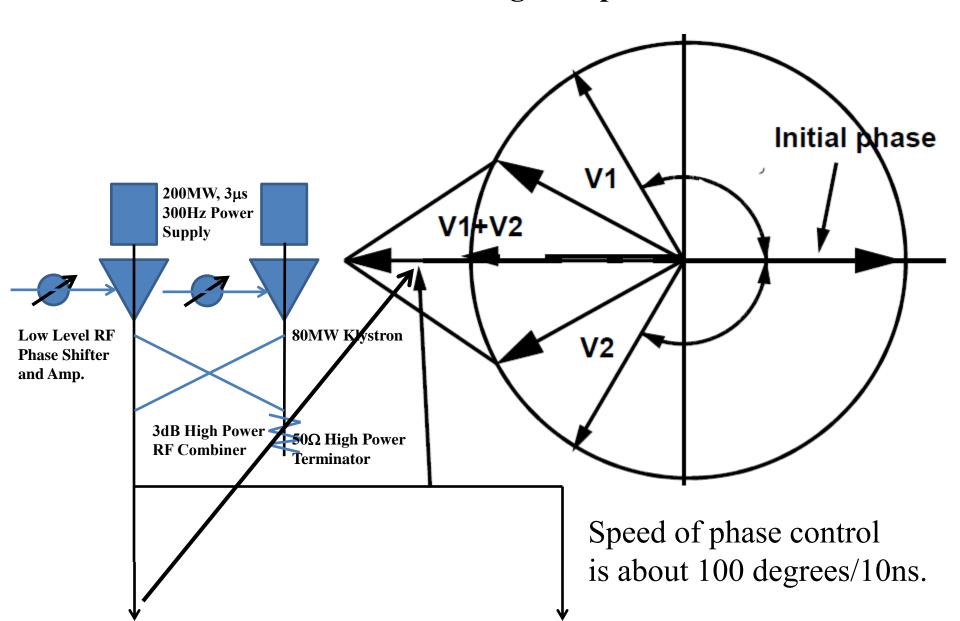


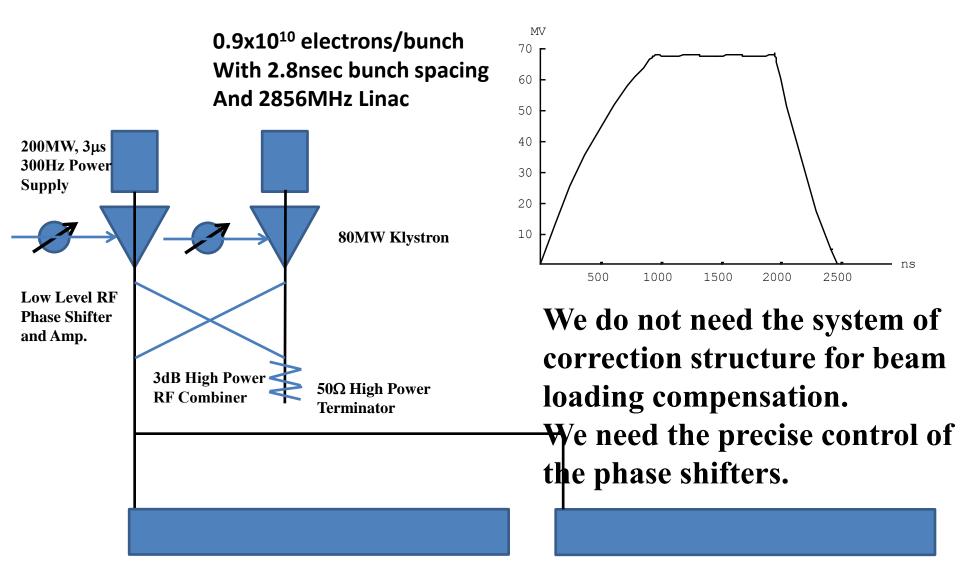
3.6 cell RF Gun Installation



12

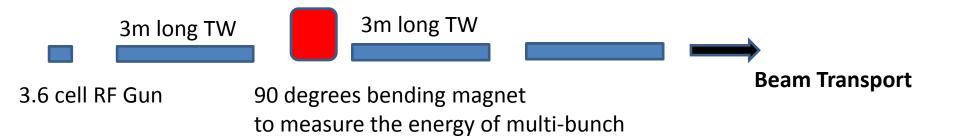

3.6 cell RF-Gun


3.6 cell RF-Gun started beam acceleration test from 1/11,2012.

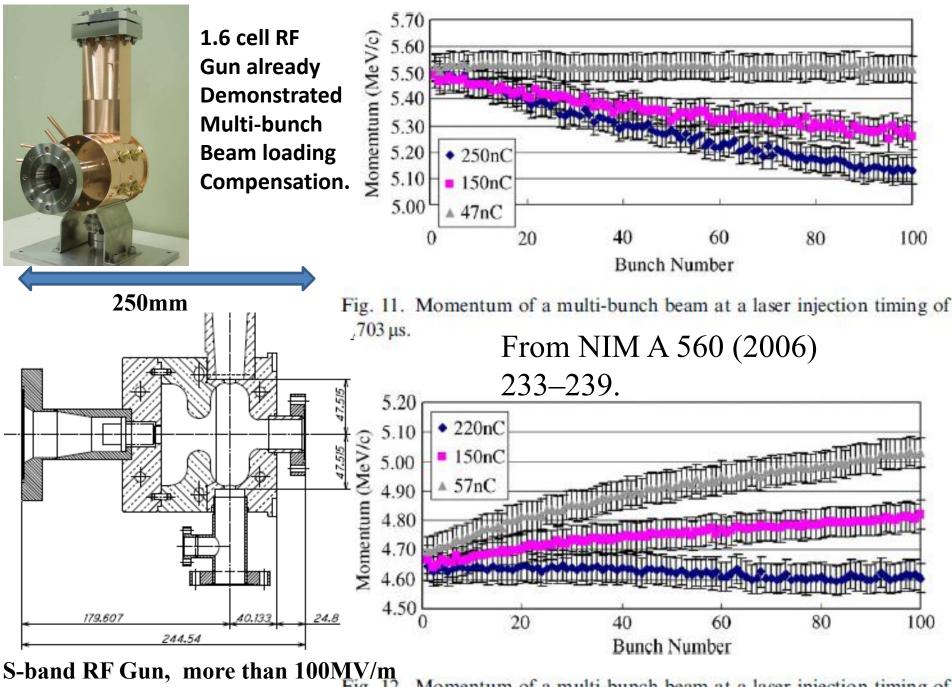

11MeV beam at 120MV/m, from 2000 2500 2500 9.9 beam 100bunches/pulse to 1000bunches/pulse beam generation

Now, 10MeV multi bunch trains are generated and accelerated. 9.6MeV beam in a week RF aging with ~20.3MW RF input power

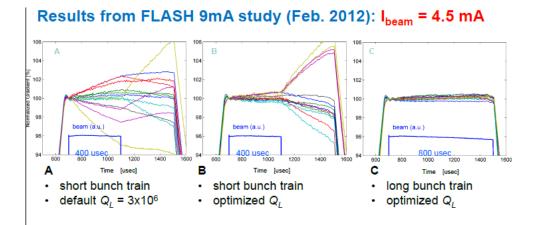
Phase to Amplitude Modulation Method for Beam Loading Compensation



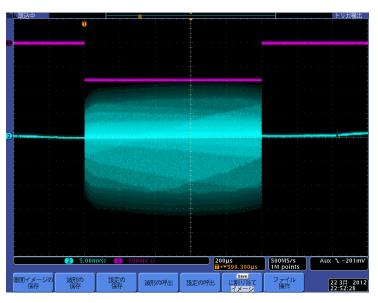
3m long constant gradient travelling wave structure


Also, I am researching the time structure of RF power feeding to increase energy gain and decided 20% of the margin +wave guide loss is too much and we can reduce it to 10% because of the experience at ATF Linac.

ATF Injector for 1.5GeV ATF Linac will be modified for beam loading compensation experiment in next year.


2x10¹⁰ with 6.15nsec bunch spacing corresponds to 0.9x10¹⁰ in the case of 2.8nsec bunch spacing as same beam loading in multi-bunch trains.

ATF Triplet Beam : 10 bunches/train with 30nsec train gap And 2.8nsec bunch spacing



Thank you.

We should make the demonstration experiment for the improvement of Linac acceleration techniques at ATF Linac.

10mA at STF-QB

Results from FLASH 9mA study (Sep. 2012):

QL optimization algorithm now includes **exception handling** (Piezo, Ql,...) Still not fully understood about optimization procedure (next study):

FLASH 9mA

Achieved ~7mA