

Recent advances in Linear Collider detector R&D

Lucie Linssen, CERN with input from many LC colleagues

Recent advances in LC detector R&D

Disclaimer:

Impossible to pay justice to the ongoing detector R&D in 25 minutes ! This talk concentrates on recent 2011-2012 advances in <u>detector technology</u> Collection of snapshots

- Linear collider detector requirements
- Vertex detectors
- Tracking
- Calorimetry (electromagnetic)
- Calorimetry (hadronic)
- Forward calorimetry
- Detector engineering
- Coil
- Summary and outlook

Detector performance requirements

High-precision physics calls for:

- Jet energy resolution of $\sigma_E/E \lesssim 3.5\%$ for jet energies from 100 GeV to 1 TeV ($\lesssim 5\%$ at 50 GeV);
- Track momentum resolution of $\sigma_{p_T}/p_T^2 \lesssim 2 \cdot 10^{-5} \text{ GeV}^{-1}$;
- Impact parameter resolution with $a \lesssim 5 \,\mu\text{m}$ and $b \lesssim 15 \,\mu\text{m}$ GeV, where the resolution is expressed as:

$$\sigma_{d_0}^2 = a^2 + \frac{b^2}{p^2 \sin^3 \theta},$$

- Lepton identification efficiency better than 95% over the full range of energies;
- Detector coverage for electrons down to very low angles.

Additional requirement, due to experimental conditions:

- Manageable occupancies in the presence of beam-induced background
- Radiation hardness for forward calorimetry

Moreover, timing capabilities required for CLIC:

- All tracking detectors with ~10 ns time-stamping capability
- Time precision on calorimeter hits of ~ 1ns

Challenges in LC detector R&D

These requirements lead to the following challenges:

Vertex and tracker

Very high granularity Dense integration of functionalities Super-light materials Low-power design + power pulsing Air cooling

Calorimetry

Fine segmentation in R, phi, Z Ultra – compact active layers Pushing integration to limits Power pulsing ultra – heavy and compact

ultra – light

Categories of candidate technologies

	Monolytic CMOS	(3D) integrated	Hybrid pixel
Examples	DEPFET, FPCCD, MAPS, HV-CMOS	SOI MIT-LL, Tezzaron, Ziptronix	CLICpix (TimePix3, Smallpix)
Technology	Specialised HEP processes, r/o and sensors integrated	Customized niche industry Processes with focus on Interconnectivity	Industry standard ASIC processes; HEP-specific high-resistivity sensors
Depletion layer	Partial	Partial or full	Full => large fast signals
Granularity	Down to 5 μm pixel size	Down to 5 µm pixel size	25 μm pixel size
Thickness	~50 μm total thickness achievable	~50 μm total thickness achievable	~50 μm sensor + ~50 μm r/o

Categories of candidate technologies

	Monolytic CMOS	(3D) integrated	Hybrid pixel	
Examples	DEPFET, FPCCD, MAPS, HV-CMOS	SOI MIT-LL, Tezzaron, Ziptronix	CLICpix (TimePix3, Smallpix)	
Technology	Specialised HEP processes, r/o and	Customized niche industry	Industry standard ASIC processes;	
Smaller pixels Thinner detectors High level of pixel functionality Fast time-stamping				

Vertex detector: FPCCD (ILC)

- Design of **FPCCD** vertex detector
 - ~5 μm pixel for inner 2 layers → sub μm point resolution expected
 - ~10 μm pixel for outer 4 layers
 - Acceptable pixel occupancy even with signal accumulation over 1 bunch-train
 - Relatively slow readout speed of ~10M pixels/s
- Recent highlight of sensor R&D
 - Small (6 mm × 6 mm) prototype
 - 4ch (output nodes)/chip
 - All 6 µm pixels
 - It works!
 - Large (65 mm × 13.4 mm) prototype
 - Almost real size prototype for inner layers
 - 8ch/chip
 - 12 μm (2ch), 8 μm (2ch), and 6 μm (4ch) pixels
 - To be tested

Vertex det.: monolithic CMOS (ILC)

Monolithic sensor, CMOS process with high-

- resistivity epitaxial layer
- Electronics integrated in pixel
- Correlated-Double Sampling (CDS) in pixel
- Rolling shutter read-out (coarse timing)
- Analog or digital readout possible

2 types of sensors for inner and outer layers

MIMOSA-30 : Dual sided readout out -

- 1 side for spatial resolution (16x16 μm pixel),
- 1 side for timing (~10μs, 16x64 μm pixel)
 MIMOSA-31 : Larger pixel for reduced power consumption (35x35 μm)

Further R&D: increased epitaxial layer, 180 nm CMOS, thinner assemblies

de

Vertex: VIP-3D / Chronopixel

3D - interconnect and active edge sensor development

Synergy with other projects (LHC upgrades)

3D multi-tier wafer assembly For high-density functionality Allows for optimal combination of processes: ASIC+sensor

Successful full VIP2b-3D 0.13 nm CMOS run at Tezzaron

Earlier 2D tests => good functionality 3D testing is underway

Monolithic-CMOS, with time-slicing ~10 μ s Ultimate design will require 45 nm technology 2nd prototype:

- Recently fabricated in 90 nm technology
- Pixel size 25*25 μm²
- Implementing lessons from 1st prototype Received from foundry, June 2102.

Looking forward to results of ongoing tests

Vertex detectors: CLIC pixel R&D

Hybrid approach:

- Thin (~50 μm) sensors (e.g. Micron, CNM, VTT)
- Thinned High density ASIC in very-deep-sub-micron:
 - TimePix3, Smallpix <= R&D steps
 - CLICpix
- Low-mass interconnect
 - Micro-bump-bonding
 - Through-Silicon-Vias (R&D with CEA-Leti)
 - Chip-stitching
- Power pulsing and air cooling foreseen

CLICpix

- 65 nm technology
- $25 \times 25 \ \mu m^2$ pixels
- 4-bit TOA and TOT information
 - 10 nsec time-slicing
- Power 2 W/cm² (continuous)
- With sequential power pulsing
 - 50 mW/cm²

64×64 pixel demonstrator Submission November 2012

Lucie Linssen, LCWS12 Arlington, Oct. 22 2012

Analog part of a CLICpix pixel

Vertex detector: Power pulsing

;]r

Vertex power pulsing design + first lab tests:

- With vertex analog powering in mind: ~2 A at 1.2 V for ~15 μs
- Low-mass !

Figure: Half ladder proposed powering scheme

Emulation of: DC-DC converter + flex cable + (LDO/capacitors) + Pixel module

Equivalent 0.145% X0/layer in vertex region 20 mV Voltage ripple achieved

Tracking => TPC pad readout

Cosmic muon shower

Six highly integrated Micromegas modules with resistive anode

S-Altro16 (130 nm) Highly integrated analog +digital TPC readout chip => Fully tested and available

Power pulsing at 50 Hz => factor 18 gain in power

TPC => pixel readout

- Major improvement in the protection layer (Si-Nitride)
- All tested Ingrids have survived more than 5 weeks
 even with high gain (i.e. more frequent sparking)
- Good signal uniformity, only very few closed holes

Several other TPC R&D not covered here: Double / triple GEM studies, Octopus etc

Tracking => "chip on sensor"

SiD tracker module

- 1024-channel KPIX chip is produced and tested
- Sensor with double metal-layer routing is available
- Kapton pig-tail available (bonding compatibility)

Pending possibilities to fully bond chip-on-sensor:

tests are ongoing, combining KPIX chip and new pigtail connection.

clc

Tracking (strips)

Charge division for 2nd coordinate in microstrip silicon sensors

- Aim: determine the coordinate along the strip. Implemented with slightly resistive electrodes (doped polysilicon) => interesting for low-occupancy tracker regions
- Position accuracy of a few percent of the microstrip length achieved
- on the first prototypes (POLYSTRIPS sensors, 2012 JINST 7 P02005).

Strip:	length 20 mm
	width 20 µm
Pitches:	implant 80 µm
	readout 80 μm
Electrode:	12.2 Ω/μm (2.8 Ω/μm)

Calorimetry (CALICE)

Lucie Linssen, LCWS12 Arlington, Oct. 22 2012

İĿ

ECAL: Si-W (CALICE)

Technological Si-ECAL prototype

Real-scale detector integration model

Large Si sensors with small 5×5 mm² PADs SKIROC ASIC "in" thin PCB

System with 1200 cells in DESY test beam in 2012

ECAL: Si-W (SiD)

Successful **bonding** of 1024-channel KPIX chip and flex cable to SiD Silicon ECAL sensor

Test beam stack in preparation

A-HCAL (CALICE)

AHCAL 2nd generation fully integrated prototype planes, now in DESY test beam

integrated electronics, based on SPIROC2b with self-triggering, timing, power pulsing

HCAL: DHCAL (CALICE)

Steel DHCAL Tungsten DHCAL 500'000 readout channels

54 glass RPC chambers, 1m² each PAD size 1×1 cm² Digital readout (1 threshold) 100 ns time-slicing Fully integrated electronics Main DHCAL stack (39) + tail catcher (15) Total 500'000 readout channels

Successfully tested:

2010+2011 Fermilab Steel absorber 2012 CERN PS + SPS Tungsten absorber

CERN test setup includes fast readout RPC after (T3B)

HCAL: SDHCAL (CALICE)

Steel SDHCAL 500'000 readout channels

~50 glass RPC chambers, 1m² each
PAD size 1×1 cm²
Semi-digital readout (3 thresholds)
200 ns time-slicing
Fully integrated electronics

With power-pulsing ! Separate power-pulsing tests in 3T magnet => Stable signal response

Full SDHCAL stack **successfully tested**: 2012 (2011) CERN - ongoing **Steel** absorber

Calorimetry: Micromegas / GEM

Micromegas

Two 1 m² chambers, multi-threshold readout Successfully tested within SDHCAL stack, 2012

32x48 pads of 1 cm² on back side

After successful tests with 30×30 cm **GEM chambers**, development towards of 1m² plane has started.

Forward calorimetry

Fully instrumented sensor planes

- Silicon (and GaAs) planes
- Dedicated FE and ADC ASICs (4metal 350 nm CMOS techn.)
- Stable operation in beam
- S/N = 20 for MIP
- Good signal uniformity

Also: successful radiation tests of large-scale GaAs sensors

őőőőőőőőőőőőőőőő

← New ADC ASIC prototype 130 nm

- 8-channel, 10 bit SAR
- Fully differential
- 40 MHz

BEAN chip

- 180 nm CMOS
- FE+ADC
- beam diagnostics output

Engineering

Progress in engineering work, applied from the very large to the very small Picture illustrates: interplay and data exchange between ILD / SiD / accelerator

Solenoid coil

Conductor size, compared to ATLAS solenoid conductor

Extrusion of Al-Ni reinforced conductor

(a) Al 0% CW

(b) Al-Ni 0% CW

(c) Al 20% CW

(d) Al-Ni 20% CW

Change in material properties of Al and Al-Ni before and after cold-working

Material property trends behave as expected

Shear test

summary and outlook

Summary

Despite funding difficulties, there is a broad ongoing detector R&D program in

- Pixel detector
- TPC tracker
- Forward-region tracking
- PFA-based calorimetry + forward calorimetry
- While main silicon tracker R&D (equally challenging !) lags a bit behind

R&D is successfully moving to <u>fully integrated technologies</u>

• This holds in particular for calorimetry

My personal comment:

In the coming years, strengthening is required in domains of:

- Low-mass Vertex-detector + Tracking integration issues
- Power pulsing !

With many **thanks to**: Karsten Buesser, Dominik Dannheim, Cristian Fuentes, Wolfgang Lohmann, Jochen Kaminski, Stefanie Langeslag, Felix Sefkow, Yasuhiro Sugimoto, Tohru Takeshita, Ivan Vila

....and for DBD's and lots of material I simply found on various LC sites

SPARE SLIDES

Vertex detector: DEPFET (ILC)

- The Depleted Field-Effect transistor relies on a depleted layer located under a FET.
- A Potential minimum is created in the channel of the transistor
- Accumulation of charge from ionizing particles modifies charge distribution in the channel and increases transistor current
- Monolithic sensor allows for thin assembly (50 µm, ex: PXD6)
- Allows for small pixel size (~25x25 µm)
- Integrating sensor (Frame ~25-100µs)
 → coarse time stamping

Vertex detector: SOI pixel sensor

- CMOS sensor on SOI wafers
 - Fully depleted High-Resistivity sensor
 - Electronics on low resistivity wafer separated by BOX from sensing layer
- Allow for standard CMOS electronics
 - Fast time stamping possible
 - Complex pixel « intelligence »
 - Insulation of each device from bulk allows for low leakage-current operation

Digital ECAL: SPiDeR-INMAPS

Digital ECAL concept for rates up to 100 particles/mm² => ~50 μm pixel size

- 168×168 pixel grid
- 50×50 μm² pixel size
- Digital readout
- Low noise
- INMAPS process
 Deep P-WELL implant for charge collection
- Charge collected by diffusion to signal diodes

Successful BEAM tests at CERN and DESY

- With MIPs and particle showers
- Confirms increased MIP efficiency with INMAPS technology
- Shower multiplicity increases with incident energy => indicating validity of DECAL concept

