Low Emittance Generation and Preservation

K. Yokoya, D. Schulte

Damping Rings

Figure 8.1. Damping ring layout: the circumference is 3238.7 m; the length of each straight is 710.2 m.

Damping Rings

- Similar concepts
 - Use of wigglers
 - ...
- Similar issues
 - Dynamic aperture
 - Electron cloud
 - Acceptable secondary emission yield is comparable: 1.2 for ILC (t.b.c.) and 1.3 for CLIC
 - Fast beam-ion instability is important in both
 - Kickers

۲

- Impedance issues need to be studied for ILC
- Similar kick stability required some 10⁻⁴
- ILC kickers need fast rise-time but kick only one bunch
- CLIC kickers need good flat top but need to rise less fast
- ... Exporimontal programm
- Experimental programme relevant for both — Test infrastructure required to test ecloud perform
 - Test infrastructure required to test ecloud performance of components

RTML

- Designs are different but many similarities
 - Should review some of the choices, e.g. central booster linac
 - Collimation needs and design
 - Instrumentation lines
- Issues
 - Coupler fields in ILC
 - Wakefields with long bunches in CLIC
 - Imperfections are most important in both projects
 - Significant emittance growth in ILC
 - Somewhat tight tolerances in CLIC
 - Improved tuning algorithms are useful for both projects
- Andrea has provided simulation results for TDR during the workshop

Main Linac

 $\beta_{\times}^{1/2}, \beta_{y}^{1/2}$ (m^{1/2}) (min 150 Min 150 Min 100 M 2.5 ղ_y (mm) F 0.5 β [m] s [m]

A. Latina K. Kubo

Main Linac

- Some difference in upgrade concept for second stage
- Most important are static and dynamic imperfections
- Very different level of misalignments (O(10) vs. O(300μm)
 - ILC components are in the cryostats
 - CLIC has a active alignment system based on LHC intersection alignment system and additional developments
- Both projects use beam-based alignment
 - Very similar methods
 - CLIC adds RF alignment at the end
 - Both can use tuning bumps
- High level of collaboration in the past (RDR)
 - Code to code benchmarking of tracking and correction procedures
- Hardware is very specific
- Experimental programme started to gain experiences with DFS

BDS

T. Tauchi R. Tomas

ILC BDS, E_{cm} =500GeV

BDS

- Many parts of the designs are similar
 - E.g. local chromaticity correction (Pantaleo-scheme)
- Some parts are different
 - E.g. order of the systems along the chain
 - Shorter CLIC FFS with less bandwidth
- Should review the differences
 - Some nice comparisons already in the talk
- The problems are quite similar
 - Design
 - Imperfections and tuning
 - Collimators
 - ...
- The experimental programme is similar (ATF2)
 - Hardware components are different, e.g. final quadruoles (QD0)
- It maybe possible to find a baseline that works for both projects
 - With some small modifications
 - CLIC lattice has been tested for ILC and seems to work nicely

Machine Modelling

- Machine modelling has a very high synergy potential
 - Codes, algorithms and formulae can be shared easily
 - Quite some effort in details of hardware
 - Significant collaboration for RDR
- Examples
 - Collimator wakefield effects
 - Analytic calculation used for ILC
 - Detailed modelling available in CLIC tracking
 - New experimental programme underway to measure wakefields for CLIC at SLAC
 - Modelling of dynamic effects
 - Muon generation and attenuation

Conclusion

- Overall issues are generally quite similar
- Can feel reduced ILC resources due to concentration on main linac RF
- CLIC resources are quite stretched
- Appears a good idea to combine activities
 - Goes beyond a common working group to exchange information
 - Rather also share the work
 - Significant time required to fully understand relevant details of each project
 - Some of this has started: Rogelio and Andrea
- Important to introduce new people to the field
 - Real R&D remains to be done
 - For technical design need to have a solution, not only to know that there is one