

Measurements of ultra-low emittances using a vertical undulator

<u>K.P. Wootton</u>, G.N. Taylor, R.P. Rassool *The University of Melbourne*M.J. Boland, B.C.C. Cowie, R. Dowd, Y.-R.E. Tan *Australian Synchrotron*Y. Papaphilippou

CERN

- Collider damping rings and Super B-factory storage rings demand $\varepsilon_v = 0.5$ -2.0 pm rad
- Collective effects lead to growth
 - Intra-beam scattering, electron cloud
- Storage ring light sources as test accelerators
 SLS, ATF2, CESR, ASLS, Diamond, …
- Need measurements of vertical emittance
 - I want your beamline!

Synchrotron light vertical emittance monitors

- Three main approaches:
 - Imaging
 - Interferometry
 - Projection
- Quick diagnostic of storage ring
- Typically bending magnet
 \$\$↓, β_y↑, η_x↓
- Visible light, hard x-ray

Andersson, NIMA 591, 437-446 2008

Undulator diagnostics

- Focus on odd (useful!) harmonics
- Horizontal undulators
 - Imaging
 - Projection
 - Absolute spectral brilliance (pinhole flux)
- Energy spread, dispersion, 'large' emittance

Moreno JSR, 19 179-84 (2012)

Hahn JSR 4, 1-5 (1997)

Undulator beam projection

Undulator projection measurements

Horizontal undulator

Undulator

25 periods

75 mm period

K = 3.85

Vertical undulator

 $\varepsilon_x = 10 nm$

 $\varepsilon_v = 100 \ pm$

 $\sigma_{E} = 0.11\%$

Photon beam brilliance

- Horizontal undulator
 - No contrast

- Vertical undulator
 - Even harmonics

Fitting spectra

- 'It is evident that the second-harmonic brightness is proportional to the beam emittance ...' Dattoli PRE 52(6) 6809-17 (1995)
- I add to this: ... the emittance in the direction of undulations
 - How do we measure photon beam brilliance?

Dattoli PRE 52(6) 6809-17 (1995)

Pinhole flux ratio

- Electron wakefield accelerator
- Flux ratio F_{n-1} / F_n

M. Bakeman et al., PAC 2009, WE6RFP074 M. Bakeman, et al., PAC 2011, MOP161

Advanced Planar Polarised Light Emitter-II Modes of operation

Sasaki, Nucl. Instrum. Methods A 347, 83 (1994)

Soft x-ray undulator beamline

- APPLE-II undulator
- White beam slits first optical element
- All focussing, monochromator downstream

- Measuring vertical emittance with one large pixel!
- Beamline optics
 - Grating monochromator
 - Au-coated mirrors
 - Energy-defining slit
 - Photodiode (GaAsP, Si)

B.C.C. Cowie, et al., AIP Conf. Proc. 1234, 307 (2010)

- Au-coated mirrors
 - Transmission varies with photon energy

Beamline optics reflectivity

Photodiode choice

- Early experiments
 - Hamamatsu GaP/Au

Wootton, et. al. IBIC'12, MOCB04 (2012)

- Ratio of peaks
- Absorption edges
 - Silicon photodiode
- Keithley picoammeter
 - Spans many orders of magnitude in current

FIG. 2. Spectral responsivity of a Si n on p diode and a GaAsP/Au diode

Krumrey, Tegeler (1992) Rev Sci Instrum 63 (1), p. 797-801

Measured undulator spectrum

K.P. Wootton, M.J. Boland, R. Dowd, Y.-R.E.Tan, B.C.C. Cowie, Y. Papaphilippou, G.N. Taylor, R.P. Rassool 'Observation of picometer vertical emittance with a vertical undulator' Phys. Rev. Lett. (in press).

Undulator projection measurements

Vertical undulator

Emittance envelopes

- Measured ratio of adjacent peaks
- F_{n-1}/F_n
- Fitted envelopes of emittance
 - Fitted pinhole size of $260 \times 260 \ \mu m^2$
 - $-\chi^2$ minimisation using Matlab and SPECTRA 9.0
- 0 pm rad
 - Ratio is non-zero

K.P. Wootton, M.J. Boland, R. Dowd, Y.-R.E.Tan, B.C.C. Cowie, Y. Papaphilippou, G.N. Taylor, R.P. Rassool 'Observation of picometer vertical emittance with a vertical undulator' Phys. Rev. Lett. (in press).

Where to?

- Fixed pinhole diameter
- SOLEIL DiagOn (fixed energy 367.5 eV)
- SPring-8 BL45XU (vertical IVU)
- Higher undulator K
- Rejection of horizontal polarisation
- 1.5 GeV for IBS

Moreno JSR, 19 179-84 (2012)

Tanaka JSR 5, 414 (1998)

Rejection of horizontal polarisation

S. Takano, EMIT' 97, KEK Proceedings 97-20 (1997)

New experiments

- Looking for beamlines!
- APPLE-II or vertical undulator (EM-EPU?)
- High undulator K(4?), lots of harmonics
- White beam slits first optical element
- All focussing, monochromator downstream
- Rejection of horizontal polarisation a plus

- Undulator measurement of emittance is an old technique
 - Usually use horizontal undulator, horizontal emittance
 - Introduce vertical undulator, vertical emittance
- Measure pinhole spectra for different emittances
 - Pinhole much smaller than $1/\gamma$ undulator cone.
- Evaluate ratios of adjacent harmonics
 - Simulations of undulator flux
 - Knowing pinhole size, would fit for beam emittance
- New vertical emittance measurement for many electron storage rings

Thank-you!

k.wootton@student.unimelb.edu.au

References

- Bakeman, et al., PAC 2009, WE6RFP074
- Bakeman, et al., PAC 2011, MOP161
- Cowie, et al., AIP Conf. Proc. 1234, 307 (2010)
- Dattoli PRE 52(6) 6809-17 (1995)
- Hahn JSR 4, 1-5 (1997)
- Krumrey, Tegeler Rev Sci Instrum 63 (1), 797 (1992)
- Moreno JSR, 19 179-84 (2012)
- Sasaki, NIM:A 347, 83 (1994)
- Shintake NIM:A 311, 453-464 (1992)
- Takano (1997) 'On Emittance diagnostics of electron beam by observing synchrotron radiation from a vertical undulator'. KEK Proceedings 97-20.
- Talman NIM:A 489, 519 (2002)
- Tanaka, et al., JSR 5, 414 (1998)
- Tanaka & Kitamura, JSR 8 1221 (2001)
- Wootton, IBIC'12, MOCB04 (in press)
- Wootton et al. 'Observation of picometer vertical emittance with a vertical undulator' Phys. Rev. Lett. (in press) [link]