

Intrabeam Scattering Studies at CesrTA

Michael Ehrlichman

J. Shanks, S. Wang, W. Hartung, D. Rubin, D. Sagan (Cornell) R. Holtzapple (CalPoly)

- 17 slides after this one
- 1. Introduction to IBS
- 2. Introduction to CesrTA IBS Program
- 3. Briefly discuss modeling
- 4. Show data and modeling results
- 5. Program directions

- In context of e⁺/e⁻ storage rings: A single-bunch, collective effect that limits the density of particle beams.
 - Interpret as either a per-bunch current limit or a lower bound on emittance.
 - Constrains damping ring parameters in future colliders.
- Mechanism:
 - In a storage ring, the average momentum of the 3 bunch dimensions are unequal. i.e. the temperatures are not in equilibrium.
 - Scattering transfers momentum from the "hotter" dimensions to the "cooler" dimensions.
 - Additionally, scattering that occurs in a dispersive region increases the total momentum of the 3 dimensions.
- IBS has been observed to have a significant impact on hadron machines such as RHIC, Tevatron, LHC, and has been observed at electron machines such as ATF and CesrTA.

Why Study IBS at CesrTA?

- CesrTA is a low-emittance wiggler-dominated e+/emachine capable of high single-bunch currents.
 - Small beam sizes:
 - Single Bunch Current:
 - Variable Beam Energy

 $\langle \sigma_x \rangle \approx 240~\mu{\rm m}$, $\langle \sigma_y \rangle \approx 12~\mu{\rm m}$

gy 10^9 to 10^{11} part/bunch

- e⁻ and e⁺
- Versatile Optics (knobs for emittance, dispersion in wigglers and instrumentation source points)
- Variable RF Voltage
- Instrumented for simultaneous measurement of projected beam sizes in all 3 dimensions
 - Bunch-by-bunch, turn-by-turn beam diagnostics
- Because we need to
 - The next generation of colliders (and light source) will be low-emittance lepton machines whose design will be impacted by IBS predictions.

- A consequence of CesrTA's versatility is that the machine requires specific setup and tuning prior to each experiment
- vBSM, xBSM, and Streak Camera are multi-purpose devices and require configuration and monitoring
- 5 or 6+ people on shift
- Conditions are set:
 - Beam energy (1.8, 2.1, 2.3 GeV)
 - Operating Point (Tunes) Set
 - Set RF Voltage (range is >6.3 MV to <3.0 MV)
 - LET Corrections and Optics Choice
 - Closed orbit & dispersion bump knob for vertical emittance adjustment

- 1. Configure machine as just mentioned
- 2. Charge single bunch to 10+ mA
- 3. Cut injection and take data as beam decays
 - Decay due to Touschek scattering
 - Each run lasts about 30 minutes
 - Decay to 4 mA in about 3.5 minutes.
 - Decay from 4 mA to 1 mA in about 21 minutes.
 - Below 1 mA, decay is very slow. Scraping is used to speed things up.
 - Gaps in upcoming Beam Size vs. Current plots are due to scraping

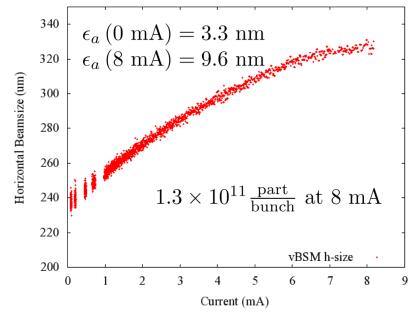
- Model results will be shown along with data
 - 1. Twiss based: Piwinski, Bjorken-Mtingwa, and descendants.
 - Commonly used
 - Sigma-matrix based: Kubo and Oide¹. Uses Eigendecomposition of the sigma matrix, rather than Twiss parameters. Normal modes.
 - Natural handling of coupling between the three dimensions²
 - 3. Monte-Carlo: Tracking code with SR. Application of Takizuka and Abe's plasma collision algorithm in the rest frame of the bunch.
 - Robust, but CPU-intensive
 - Options for OpenMP and OpenMPI parallelization
- Implemented in BMAD simulation suite
 - Symplectic tracking, field maps for wigglers, normal mode computations, sextupoles, multipoles, synchrotron radiation, hooks to Etienne's PTC
 - Misalignment & correction scheme

<u>Cornell Laboratory for</u>

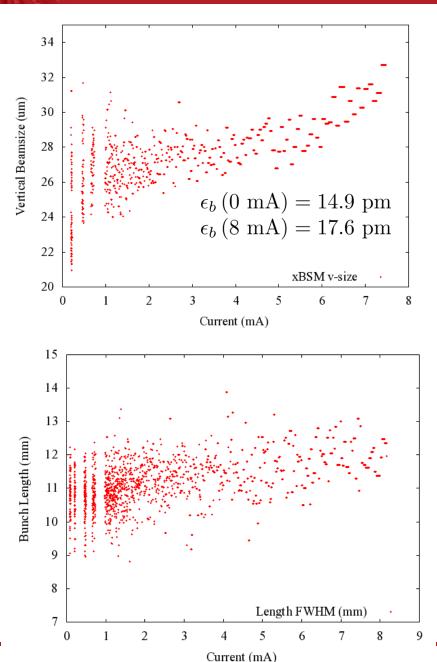
Education (CLASSE)

Accelerator-based Sciences and

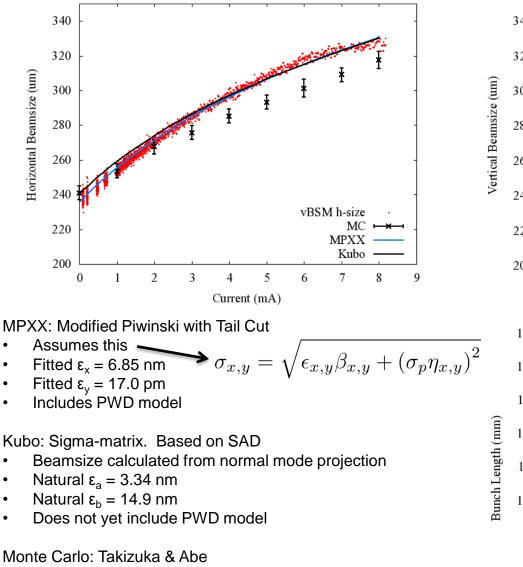
- Additional current-dependent effects observed in the CesrTA IBS Experiments
 - Potential Well Distortion
 - Causes bunch lengthening
 - Does not impact energy spread
 - Energy spread has been measured to be constant
 - Strength of effect depends on bunch length, but not transverse dimensions
 - Current-Dependent Tune Shift
 - Tunes of machine change with current
 - ~0.5 kHz/mA
 - Brings operating point towards or away from resonance lines



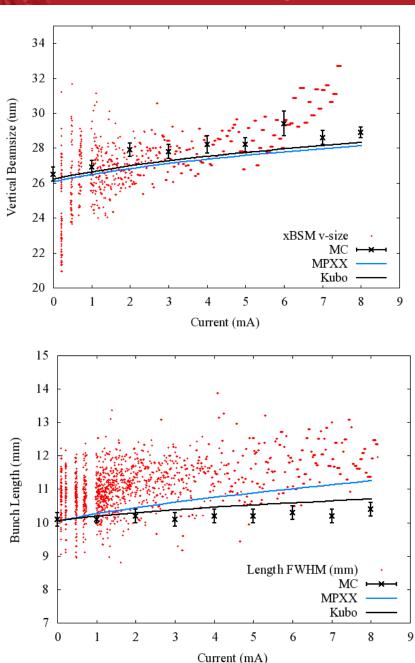
1. Positrons in LET conditions

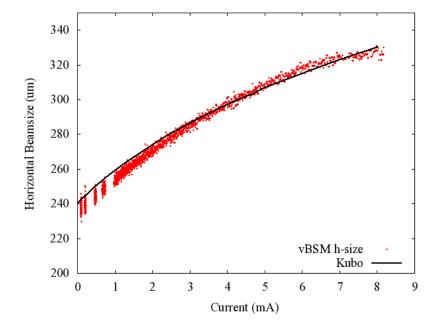

- 1. Bare data
- 2. Method Comparison
- 3. With just sigma-matrix model
- 2. Positrons with vertical beam size increased
- 3. Electrons in LET conditions
- 4. Electrons with vertical beam size increased

e⁺, LET Conditions



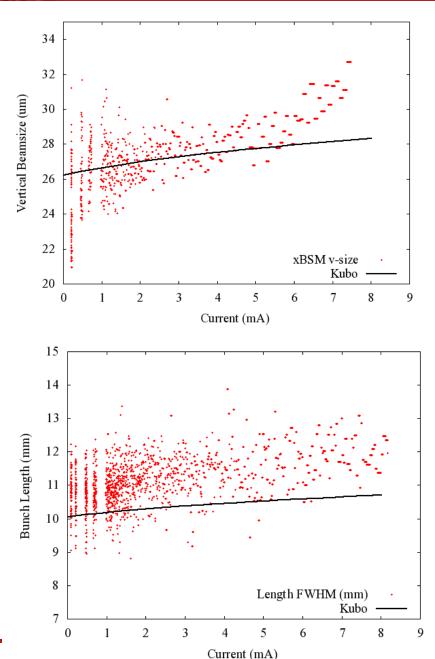
- Data from April 2012 CesrTA Run
- Positrons with small vertical beamsize
- 2.1 GeV
- Fractional tunes:
 - Qx = 0.624
 - Qy = 0.590
- Large horizontal blow up due to large horizontal dispersion
- Small vertical blow up due to small vertical dispersion




Still e+, LET: Method Comparison

- Emittance is a result of trackin
- Does not yet include PWD model

Still e⁺, LET: Σ-matrix IBS formalism

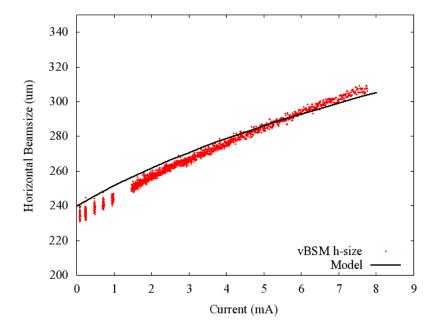


- Zero current emittances obtained from Etienne Forest's PTC
 - $\epsilon_a = 3.34 \text{ nm}$
 - $\epsilon_{\rm b} = 14.9 \, \rm nm$

•Observed discrepancies with model:

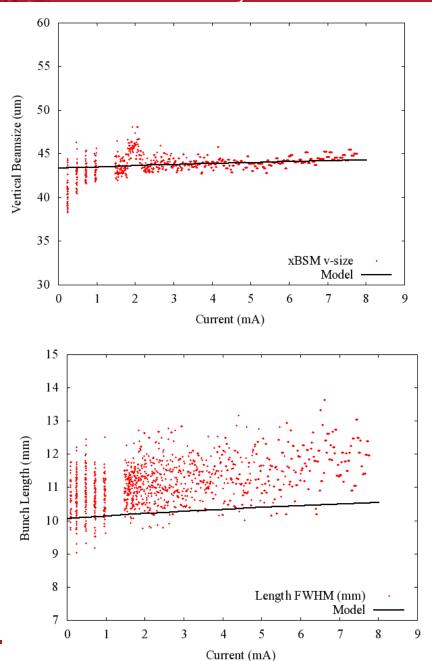
- •Vertical blow-up above 6 mA.
- •Vertical scatter at low current.

1 mm systematic in bunch length
Energy spread measured, found to be constant

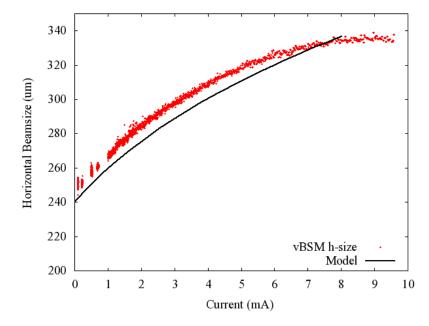


Cornell Laboratory for

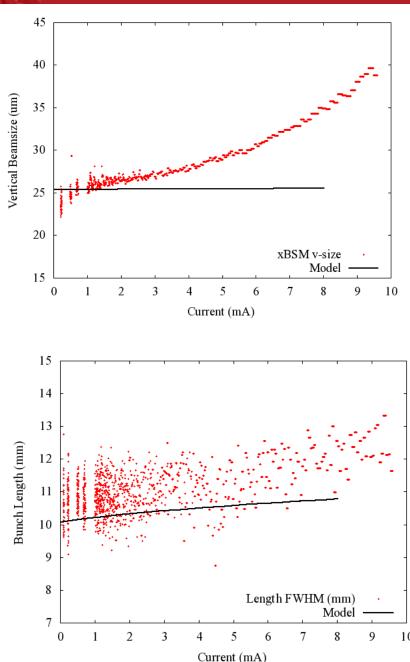
Education (CLASSE)

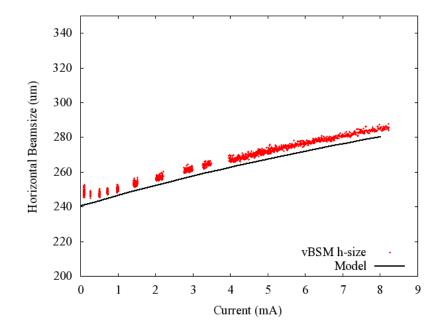

Accelerator-based Sciences and

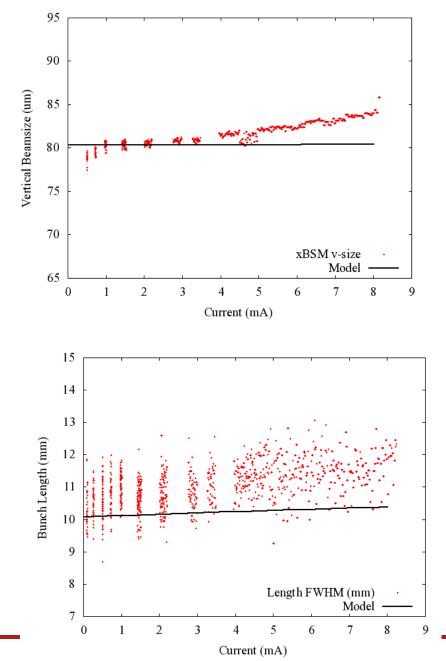
Positrons, Coupling Knob $\sigma_v \rightarrow 43 \ \mu m$


- Closed coupling & dispersion bump (through wigglers) used to generate vertical emittance
- Natural $\varepsilon_a = 3.34$ nm
- Vertical Emittance (fitted): $\varepsilon_{b} = 43.2 \text{ pm}$
 - 4 times larger than LET

Longitudinal behavior does not change significantly with reduced particle density.
Supports PWD hypothesis

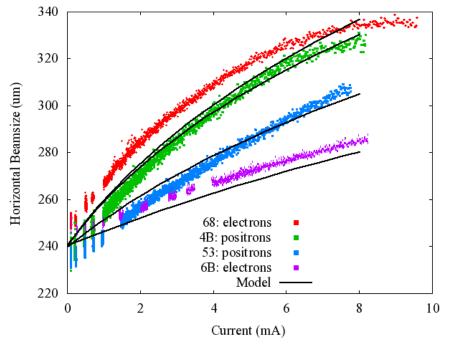


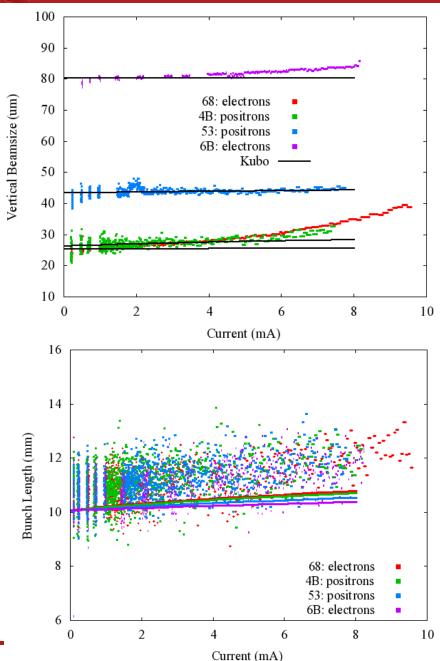

Electrons, LET

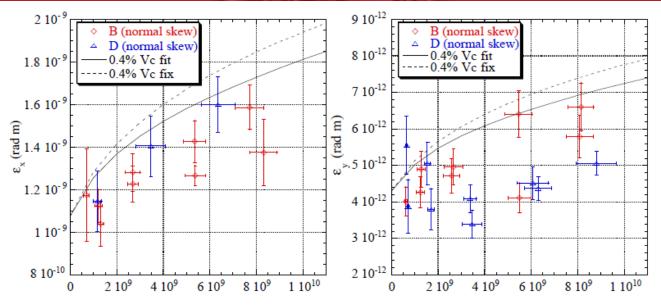


- Same natural emittances as e⁺ case:
- Natural $\varepsilon_a = 3.34$ nm
- Natural $\varepsilon_{\rm b} = 14.9$ nm
- Different instrumentation source points
- Blow-up at high current is different for electron and positron bunches.
 Species-Dependent Tune Shift?
 lons?

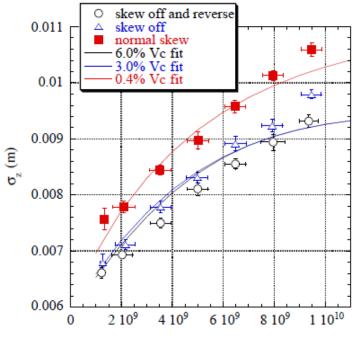
Electrons, $\sigma_v \rightarrow 80$ um




- Closed coupling & dispersion bump used to generate vertical emittance
- Natural $\varepsilon_a = 3.34$ nm
- Fitted $\varepsilon_{\rm b} = 149.6 \text{ pm}$
- Vertical emittance 10 times larger than LET


Combined Plots

- Slope of horizontal data decreases as vertical size is increased
- Above 4 to 6 mA, vertical data is influenced by something that does not fit IBS description



- ATF results presented at 2007 IBS Workshop at Daresbury
- Different color data points show adjustment of skew quads to change coupling conditions in machine
- Different model curves reflect different PWD
- Maximum current is 10¹⁰ part/bunch

Cornell Laboratory for

Education (CLASSE)

"Intrabeam scattering in ATF Damping ring - Review of Old Studies," K. Kubo, IBS Workshop @ Daresbury

Ν

- Understand scatter at low current
 - Recent developments point to noise
- Understand blow up at high current
 - Combination of effects
 - Species dependent tune shift
 - Tune plane
 - Noise
 - Other physics (space charge, ions, ???)
- IBS at 1.8 GeV and 2.3 GeV
- Use lattices that manage V₁₅ and other coupling terms
- Manipulate coupling terms to thoroughly validate Σ-matrix based IBS formalisms

- IBS is an important effect for the next generation of colliders (and light sources)
- IBS theory gives good agreement with proton¹ and ion machines²
- CesrTA is good laboratory for studying IBS in lepton machines
 - Versatile optics and instrumentation
 - Different energies and species
 - Damping wigglers
- We also encounter the other current-dependent effects that show up in small, intense beams
- Goals:
 - 1. Generate beams where IBS effects are dominant and can be separated from other effects
 - 2. Thorough investigation of the available IBS modeling formalisms
 - 1. Twiss-based
 - 2. Σ-matrix based
 - 3. Monte Carlo
 - 3. Gain experience and understanding of the other single-bunch, currentdependent effects that may be encountered in collider damping rings