

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

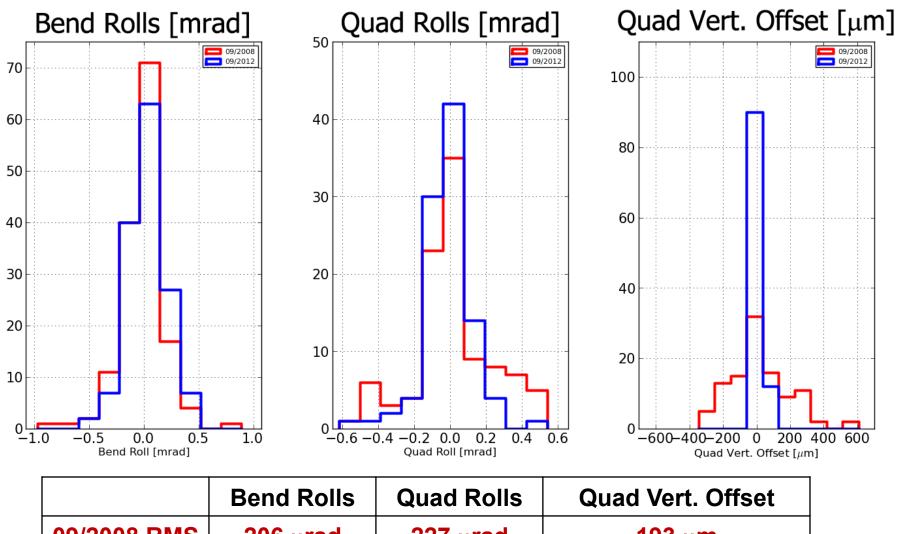
Low-Emittance Instrumentation in Use at CESRTA Michael Billing for the CESRTA Collaboration LCWS12 October 25, 2012

- Motivation for Instruments in CESRTA
- Alignment Tools
- Beam-Based Instruments
 - Digital Tune Tracker
 - BPM System
 - xBSM -Xray (Vertical) Beam Size Monitor
 - vBSM -Visible (Horizontal) Beam Size Monitor
- Process for Reduction of Vertical Emittance

- Many Facilities and Users Demand Low Emittance:
 - Electron Cloud studies at CESRTA
 - Lepton colliders
 - Linear collider damping rings
 - Light sources
- Goals of Emittance Tuning at CESRTA:
 - 1. Develop framework for optics characterization which:
 - 1. has a fast turn-around time for full characterization
 - 2. scales well to large rings
 - 3. does not induce hysteresis in magnets
 - 2. Utilize optics characterization to correct $\epsilon_v < 10 pm$ -rad
 - 3. Develop instrumentation to support these goals

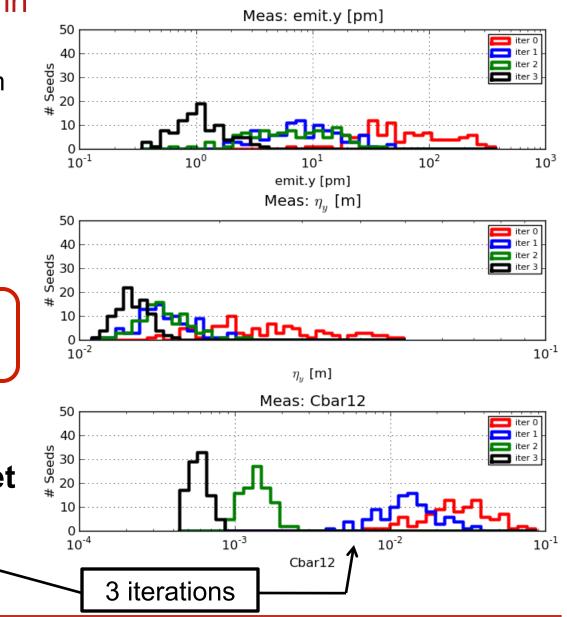
Survey Instrumentation at CESRTA

- API Tracker III laser tracker with interferometer
- Monument with1.5" spherically mounted reflectors
- Leica DNA03 digital level & staffs
- Measurements
 - Survey network grid allows observation of drift of monuments over time
- More Accurate Survey
 - Reduces size of correction
 - Sets baseline for limit to smallest emittance


CESR Alignment

Progress of CESR Survey and Alignment

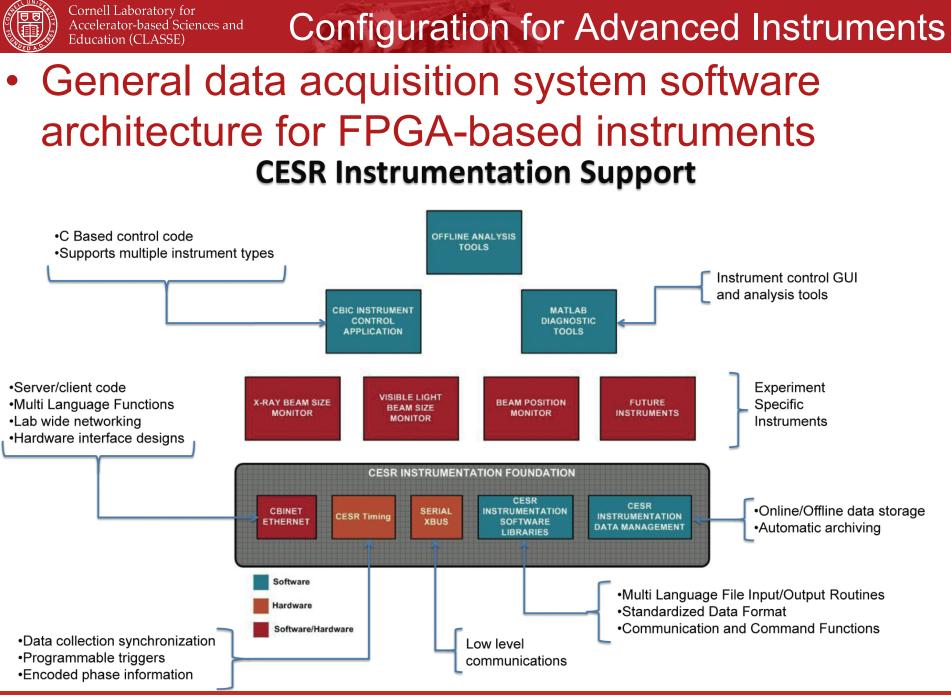
09/2008 RMS	206 μ rad	227 μrad	193 μ m
09/2012 RMS	177 μrad	148 μ <mark>rad</mark>	25 μm


Cornell Laboratory for Accelerator-based Sciences an Study of Beam-based Emittance Correction

- Use RMS offsets, tilts from survey
- Repeat for 100 random distributions; record emittances

Mean $\varepsilon_y = 100$ pm-rad 95%CL $\varepsilon_y = 250$ pm-rad

To achieve CESRTA target emittance, we must employ beam-based correction techniques

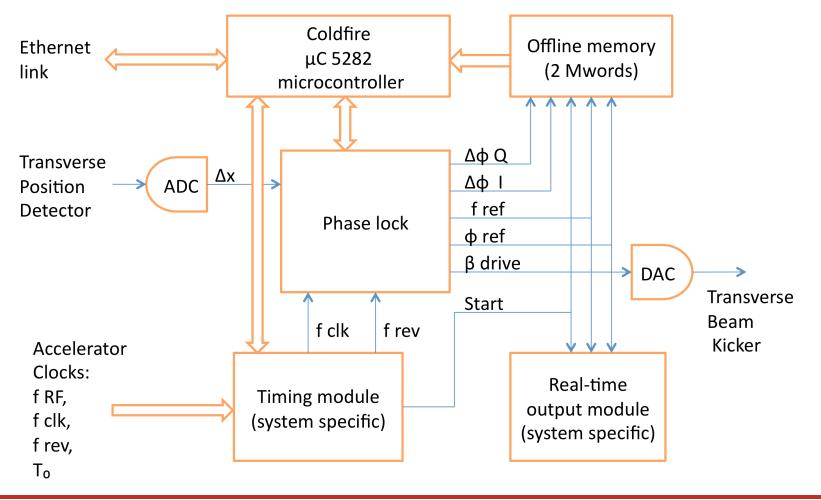

- Accelerator Component Survey:
 - Better element placement requires much less correction
 - Good placement (location & tilts) needed for
 - Bends, quadrupoles & to a lesser degree sextupoles
- Accurate Twiss, Couping & Vertical Dispersion
 Parameter Measurements:
 - Utilize excitation + BPMs & a good model for correction of
 - Orbit (H & V steerings)
 - Beta-functions (quadrupoles)
 - Linear coupling matrix elements (skew quadrupoles)
 - Vertical dispersion (skew quadrupoles & V steerings)
 - Check Accuracy of Correction
 - Measure vertical (& horizontal) beam size
- Iterate These Steps

Beam-based Instrumentation

- General Requirements
- CESR General Interface for Advanced Instruments
- Instruments
 - Digital Tune Tracker
 - BPM System
 - xBSM -Xray (Vertical) Beam Size Monitor
 - vBSM -Visible (Horizontal) Beam Size Monitor

Cornell Laboratory for Accelerator-based Sciences an Requirements for Beam-based Instruments

- CESR's instruments must function in an experimental setting
- Instruments must function for both CESRTA and CESR, operating for CHESS X-ray lines
 - CesrTA
 - Need to be able to study effect of Electron Clouds within trains of positron or electron bunches
 - Able to measure each bunch within multi-bunch trains
 - Train spacing \geq 4 nsec in arbitrary distribution
 - Able to synchronously measure 1) Beam Position, 2) Vertical & Horizontal Beam Sizes
 - CESR, operating for CHESS
 - Have electron & positron counter-rotating beams
 - Need to readout positions of bunches in both beams
 - These considerations have driven our solutions



Purpose – Phase-Stable Beam Excitation

- Locks to betatron and synchrotron tunes by resonantly exciting beam via either
 - Narrowband shaker magnet
 - Stripline or cavity kicker (H, V, L)
- To provide phase information to BPM modules (encoded within the BPM clock), which in turn yield
 - Phase advance information around ring \rightarrow beta functions
 - Betatron coupling information
 - Dispersion information
- Can lock on any one bunch in the ring
- Critical element for phase accuracy to follow any betatron or synchrotron tune drift during measurement

Functional block diagram

BPM Development

Property

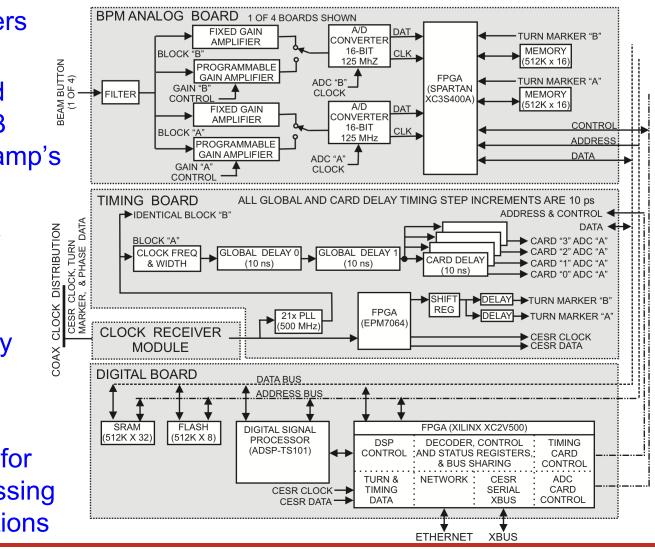
Front-end Bandwidth (4ns bunch trains) Absolute Position Accuracy (long term) Single Shot Position Resolution Differential Position Accuracy Channel-to-Channel Sampling Time Accuracy BPM Tilt Errors (after correction)

Specification 500 MHz 100 µm 10 µm 10 µm 10 ps 10 mrad

4 channels of 2 independently-timed digitizers (1 for each button)

Peak-detection of BPM signal ≥ 4ns-spaced bunches

Onboard FPGA for


- o auto-timing control
- triggered-synchronous TBT trajectory acquisition for all bunches
- FFT of resonantly excited trajectories

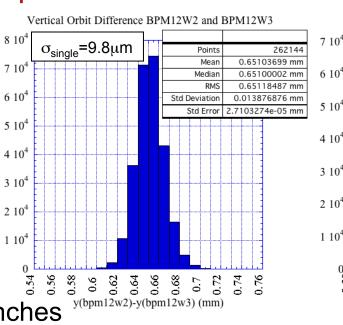
Module Layout (BPM system uses ~110 modules)

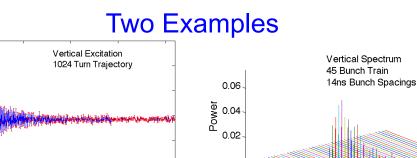
- 4 Analog boards, each containing

- 2 16b-digitizers at 125 MHz
- Precision fixed gain & ≥ 40 dB variable gain amp's
- Independently timed for peak detection
- Timing board
 - Clocking, delay & triggering
- Digital board
 - FPGA (Xilinx) for control, processing & communications

CPBM Module Characterization

Qualification Test: Triplet BPM Position Measurement

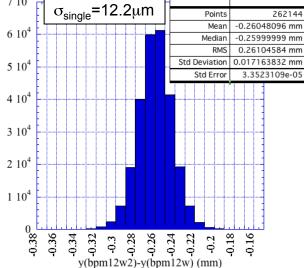

- Resolution: ~10 μm
 - dominated by timing drift
 - auto-timing can be invoked
- Multi-bunch TBT
 - Synchronous trigger ¹¹⁰ for all modules for ¹/₂ ¹/₂ any sequence of bunches


Count

₄<u>×</u> 10

λ (m

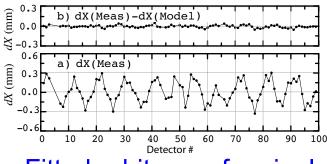
- ADC memory depth
 - >300k bunch-turns
- Timing Diagnostics
 - Displacing sampling trigger to zerocrossing of signal -> timing variation check



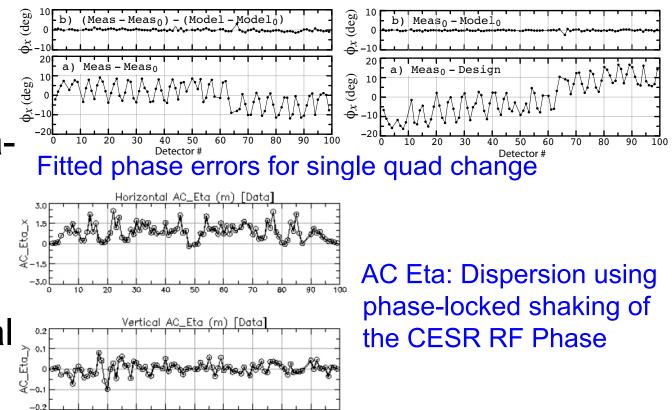
390

345

Vertical Orbit Difference BPM12W2 and BPM12W


Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

CBPM Measurements



- & Coupling
- See explanation below
- Dispersion
 - Conventional
 & AC

Fitted orbit error for single corrector change

90

100

5D

60

70

80

0

10

20

30

40

Accelerator-based Sciences and CBPM Calculation of Betatron Phase & Coupling

- 1) Excite beam with Tune Tracker encode its phase within the BPM clock
- 2) At each BPM button, measure the signal intensity on a sequence of turns
 - Typically N = 40k turns of data are recorded
 - Horizontal and vertical measurements are done simultaneously
 - Tunes must not be near resonances, to prevent cross-talk between H/V modes
- 3) BPM modules compute **FFT amplitude** of horizontal motion (Similar equations for vertical mode) at **button j** is a sum over **turns i**:

$$A_{j, \sin, h} = \frac{2}{N} \sum_{i}^{N} \sin\left[\theta_{t, h}(i)\right] a_{j}(i) \quad \text{(in-phase)}$$
$$A_{j, \cos, h} = \frac{2}{N} \sum_{i}^{N} \cos\left[\theta_{t, h}(i)\right] a_{j}(i) \quad \text{(out-of-phase)}$$

 $\theta_{t,h}(i)$ = phase of tune tracker drive signal (phase-locked to horiz. tune) on turn i $a_i(i) = signal on turn i at button j$

Define:

 $A_{x/y, sin/cos, h/v}$ = x/y components, via standard BPM " Δ/Σ " $A_{x/y, h/y}$ = Total FFT amplitude of x/y signal at the horiz/vert mode

Phys. Rev. ST Accel. Beams 3, September 2000, 092801

Aside: Coupling Definition

- Two eigen modes for x-y coupled motion
 - "Diagonalize" motion into 2 eigen modes
 - Coupling can be represented as 2 components:
 - Slow wave propagates as $\varphi_{v}-\varphi_{h}$
 - Fast wave propagates as $\phi_v + \phi_h$

Reminder– Cornell uses Cbar to describe coupling for 4x4 transport:

$$\begin{pmatrix} \mathbf{M} & \mathbf{m} \\ \mathbf{n} & \mathbf{N} \end{pmatrix} = \mathbf{V}\mathbf{U}\mathbf{V}^{-1} = \begin{pmatrix} \gamma \mathbf{I} & -\mathbf{C} \\ \mathbf{C}^{+} & \gamma \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{pmatrix} \begin{pmatrix} \gamma \mathbf{I} & \mathbf{C} \\ -\mathbf{C}^{+} & \gamma \mathbf{I} \end{pmatrix}$$

Cbar = above C matrix, but in amplitude normalized coordinates

When we excite the beam with two tune trackers, we drive each of these eigen modes.

Betatron Phase & Coupling Measurement

From measurements, we obtain –

Betatron phases and couplings (Cbar) defined by:

$\phi_{x,h} = \tan^{-1} \left(A_{x,\sin,h} / A_{x,\cos,h} \right)$	(phase advance)
---	-----------------

 $\overline{C}_{12} = \sqrt{\beta_h / \beta_v} \left\{ A_{y,h} / A_{x,h} \right\} \sin(\phi_{y,h} - \phi_{x,h})$ from horiz. mode $= \sqrt{\beta_v / \beta_h} \left\{ A_{x,v} / A_{v,v} \right\} \sin(\phi_{x,v} - \phi_{y,v})$ from vert. mode

from **vert.** mode

from **vert.** mode

Cbar 12 is "out-of-phase" component of coupling matrix

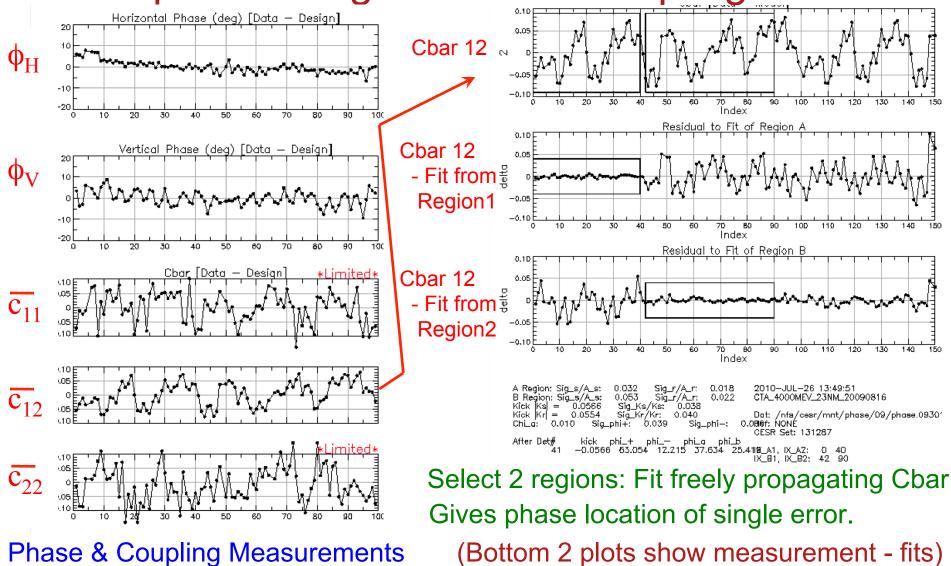
• Insensitive to rotation of x-y coordinates - Independent of physical BPM tilts

 $\overline{C}_{22} = \sqrt{\beta_h / \beta_v} \left\{ A_{v,h} / A_{x,h} \right\} \cos \left(\phi_{v,h} - \phi_{x,h} \right)$

 $\overline{C}_{11} = \sqrt{\beta_v / \beta_h} \left\{ A_{x,v} / A_{v,v} \right\} \cos \left(\phi_{x,v} - \phi_{v,v} \right)$

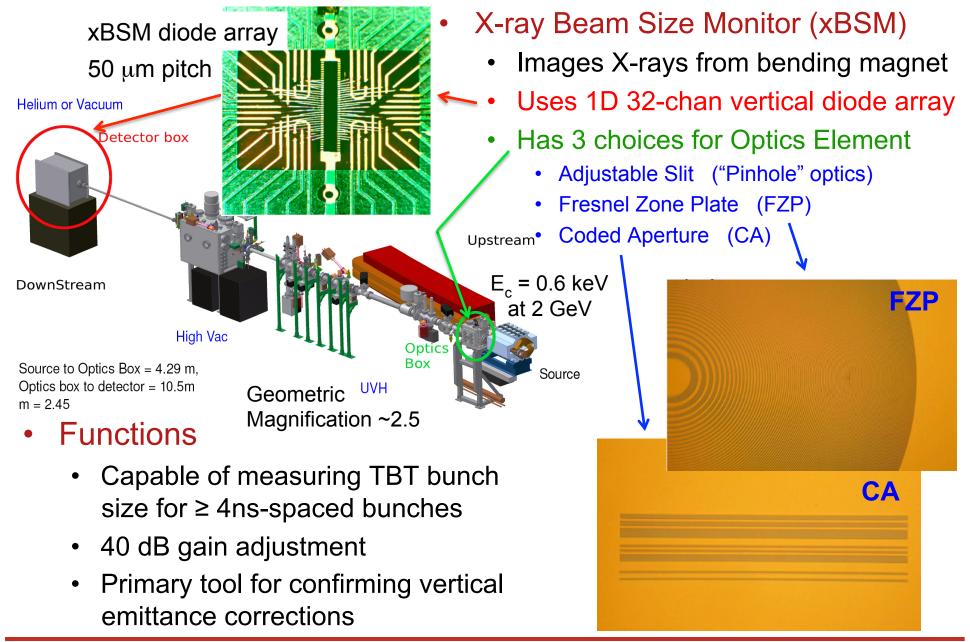
Cbar 22 and Cbar 11 are "in-phase" components

• Sensitive to rotation of x-y coordinates - Dependent on BPM tilts


Similarly, when resonantly exciting beam **longitudinally** and measuring beam position **at the synch tune**, one obtains the **dispersion** ("AC dispersion" technique)

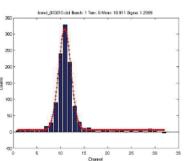
(dea) [Data **Bunch-by-bunch Phase** Measurement Φ_H Bunch 12 phase, for 30 Bunch showing phase Vertical Phase (deg) [Data — Ref shift along train Train See phase Horizonta<u>l Phase (deg) [Data — Ref]</u> advances Φ_H Bunch 15 phase, errors for showing a spurious each bunch Vertical Phase (deg) [Data - Ref] electron cloud signal - (Coincidently $\mathbf{0}_{\mathbf{v}}$ 100 80 observe a Horizonta<u>l Phase (deg) [Data — Ref</u>j spurious signal arising Φ_H Bunch 25 phase, from EC) showing expanding Vertical Phase (deg) [Data - Ref] electron cloud. 70 80

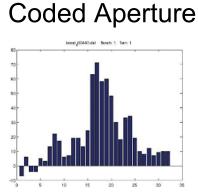
Cornell Laboratory for Accelerator-based Sciences and Sing CBPM & Digital Tune Tracker Results Education (CLASSE)

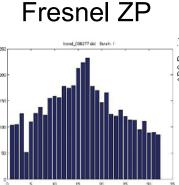

Example: Finding Source of Coupling Error

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

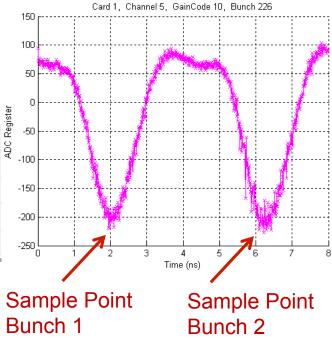
X-ray Vertical Beam Size Monitor

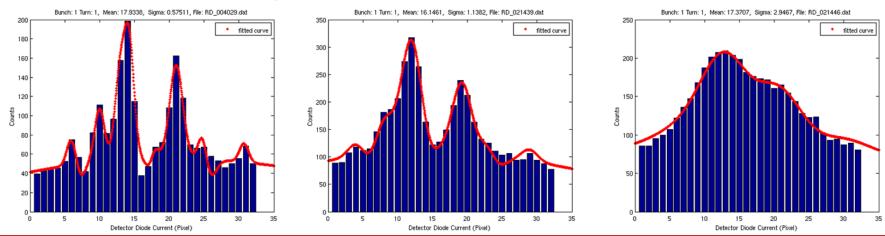





Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

xBSM Measurements


Observe signal with single bunches with different x-ray optics Slit Coded Aperture Fresne



Single Pass-Single Bunch Distributions with Fitting Function

Coded Aperture Fits for Different Beam Sizes

Low-Emittance Instrumentation in Use at CesrTA

- Systematic studies of multi-bunch performance with different x-ray optics (30 bunch train)
 - Slit (Gap) size & position
 - Fresnel ZP size & position

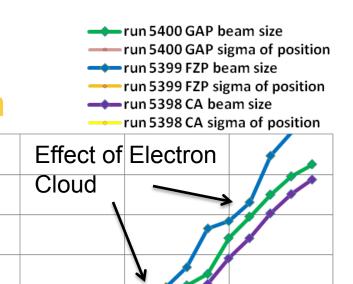
40

35

30

25

20


15

10

5

0

- Coded Aperture size & position

Data for each optic taken simultaneously

10

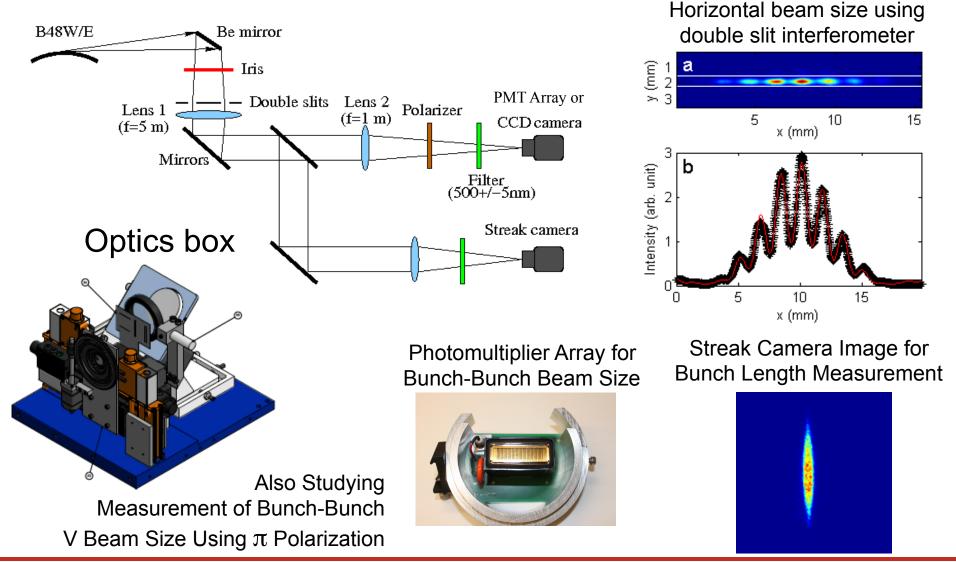
15

bunch number

20

25

ε, **=6-7 pm**


5

30

Accelerator-based Sciences and Horizontal Visible Light Beam Size Monitor

Visible-light Beam Size Monitor (vBSM)

- Orbit Response Matrix (ORM)
 - Advantages:
 - Thorough measure change in machine conditions due to perturbations for elements throughout the ring
 - Very successful in reducing emittance at other storage rings
 - Disadvantages:
 - Data acquisition is slow
 - At CESRTA, ~2.5hrs to collect one data set
 - For low-emittance rings with small Touschek lifetime, many top-ups are necessary
 - Acquisition time scales linearly with number of elements in ring
 - Varying all corrector magnets introduces hysteresis

→ Does not meet our requirements!

CESR's Optics Characterization Method

- Most optics measurements at CESR utilize resonant excitation of betatron or synchrotron motion for the bunch
- Typical resonant excitation data acquisition:
 - 1. Resonantly drive the bunch with Digital Tune Trackers
 - Phase-lock and resonantly excite any single bunch in the ring
 - Initial setup: ~1 minute
 - 2. Record and read out TBT data
 - 2¹⁵ = 32,768 turns used for most common measurements
 - Acquisition time: ~10 seconds
 - 3. Post-process data to extract optics information: < 5 seconds
- Betatron phase, coupling, and dispersion all measured with resonant excitation techniques
- Meets all requirements:
 - 1. Fast measurements, therefore fast turn-around between corrections
 - 2. Scales well to large rings
 - 3. No magnet hysteresis

Precision BPMs required for accurate data for corrections

1. Calibrate BPM button-to-button gain errors

- Fit gains for 2nd order expansion of BPM button using turn-by-turn trajectory data (*Phys Rev ST Accel Beams, 13, Sept. 2010, 092802*)
- Duration: 30 seconds to acquire data; < 5 minutes to process & load corrections
- Result: BPM button-to-button gains known to within 0.5 %

2. Calibrate BPM-to-quadrupole offsets

- Collect betatron phase data for two different settings on a quadrupole
- Fit the phase difference to determine actual change in quad strength
- Fit orbit difference to determine kick
- **Duration**: 2 hours to measure and calibrate all BPM-to-quad offsets
- Result: BPM-to-quadrupole offsets known to within 300 μm

3. Calibrate BPM tilts

- In-phase components of Cbar coupling matrix are related to BPM tilts
- Fit many betatron coupling measurements to determine tilts
- **Duration**: 30 seconds / coupling measurement; 5 minutes for analysis
- **Result:** BPM tilts known to within **5 mrad**

1. Orbit

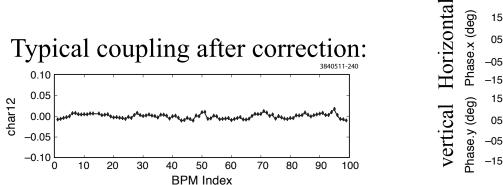
- 1. Measure horizontal and vertical orbit
- 2. Correct orbit to reference orbit

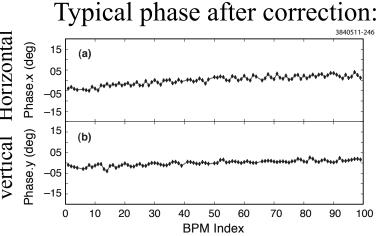
2. Betatron phase and coupling

- 1. Measure betatron phase and coupling (Cbar12)
- 2. Correct betatron phase to design, Cbar12 to zero

3. Dispersion

- 1. Measure orbit, phase and coupling (Cbar12), AC dispersion
- 2. Correct vertical orbit, Cbar12, vertical dispersion

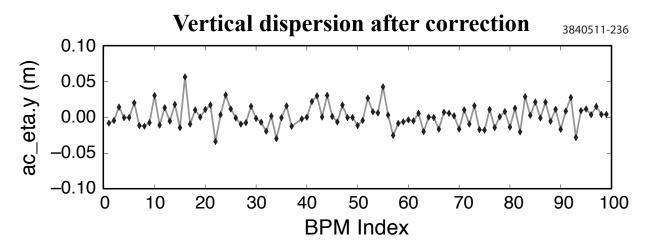

Emittance Correction I


1. Measure closed orbit

- Correct with all horizontal and vertical steerings
- Typical correction levels: Δx, Δy ~ 300μm (RMS)
- Takes about 30 seconds to measure, analyze, load corrections, and remeasure orbit

2. Measure betatron phase advance and transverse coupling

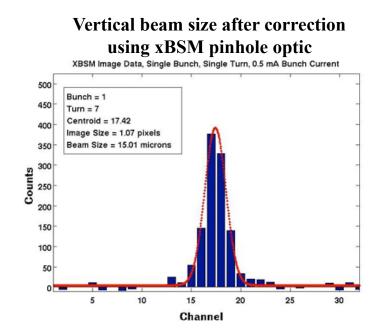
- Use all 100 quadrupoles and 27 skew quads to fit the machine model to the measurement, and load correction
- Typical correction levels:
 - $\Delta \phi$ (meas-design) < 2° \rightarrow 3% beta beat
 - Cbar12 < 0.005 = 0.5% x-y coupling
- One iteration takes about **one minute**



Emittance Correction II

3. Re-measure closed orbit, phase and coupling; measure dispersion

- Simultaneously minimize a weighted sum of orbit, vertical dispersion, and coupling using vertical steerings and skew quads
 - Typical level of correction: measure $\eta_v \sim 12mm$
 - Limited by BPM calibrations


Turnaround time: ~5 minutes per correction iteration:

- 1. Correct orbit
- 2. Correct phase + coupling
- 3. Correct orbit + coupling + dispersion

Beam size is the primary diagnostic for determining the success of emittance corrections

- X-ray Beam Size Monitor (xBSM)
 - 1D vertical diode array
 - Capable of measuring bunch-by-bunch, TBT bunch size for ≥4ns-spaced bunches
- Under final testing:
 - PMT with turn-by-turn response, using π-polarization measurement

After corrections, typically measure $\varepsilon_y < 10-15pm$ with xBSM At 0.5mA = 0.8x10¹⁰ positrons

- Achieving Low Emittance Requires Beambased Techniques
- CESRTA Has Created a Suite of Instruments

 Tune tracker, b-b: BPM system, xBSM & vBSM
- Also Developed Accompanying Analysis Tools
 - Correction: orbit, beta-functions, coupling, vertical dispersion
- Tested Procedure to Routinely Produce Low Emittance Beams
 - Tested in many different CESR optics
 - Working on ε_{y} below 10 pm

- Special Thanks to Few Individuals, Who Had Made Significant Contributions to This Talk
 - Nate Rider
 - Jim Shanks
 - John Sikora