

Barry Barish LCWS12 Arlington, TX 22-Oct-12

Technical Design Report

22-Oct-12 LCWS12 - Arlington, TX

IIL

Global Design Effort

1

- Update on major ILC accelerator R&D goals
- ILC Systems Tests
- The Technical Design Report
- Japanese plan and candidate sites
- Cost estimate and RDR comparison
- Staged approach? Higgs Factory → ILC

Major R&D Goals for Technical Design

SCRF

- High Gradient R&D globally coordinated program to demonstrate gradient by 2010 with 50%yield; improve yield to 90% by TDR (end 2012)
- Manufacturing: plug compatible design; industrialization, etc.
- Systems tests: FLASH; plus NML (FNAL), STF2 (KEK) post-TDR

Test Facilities

- ATF2 Fast Kicker tests and Final Focus design/performance EARTHQUAKE RECOVERY
- CesrTA Electron Cloud tests to establish electron cloud mitigation strategy
- FLASH Study performance using ILC-like beam and cryomodule (systems test)

The ILC SCRF Cavity

Figure 1.2-1: A TESLA nine-cell 1.3 GHz superconducting niobium cavity.

- Achieve high gradient (35MV/m); develop multiple vendors; make cost effective, etc
- Focus is on high gradient; production yields; cryogenic losses; radiation; system performance

Global Plan for ILC Gradient R&D

Year	07	200	8	2009	20	010	2011	2012
Phase		Т	DP	-1			TDP-	2
Cavity Gradient in v. test to reach 35 MV/m		→ Y	<mark>ielc</mark>	50%		ት	Yield	90%
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Global effort for string assembly and test (DESY, FNAL, INFN, KEK)						
System Test with beam acceleration			FLA	SH (DE STF2 (SY) KEK	, NN K, test	IL (FNAL start in 2	.) 2013)
Preparation for Industrialization				Р	rod	uctio	n Techn R&D	ology

New baseline gradient:

Vertical acceptance: 35 MV/m average, allowing ±20% spread (28-42 MV/m) Operational: 31.5 MV/m average, allowing ±20% spread (25-38 MV/m)

Yearly Progress in Cavity Gradient Yield

22-Oct-12 LCWS12 - Arlington, TX

Yearly Progress in Cavity Gradient Yield

22-Oct-12 LCWS12 - Arlington, TX

S-1 Global – plug compatible

Cavities, Tuners, Couplers in S1-G Cryomodule

E KAKO (KEK)

22-Oct-12 LCWS12 - Arlington, TX

S-1 Global – plug compatible

S-1 Global cryomodule assembly

Summary of Achievable Gradient for all Cavities at S1-Global

S-1 Global Achieved gradients

22-Oct-12 LCWS12 - Arlington, TX

Full beam-loading long pulse operation \rightarrow "S2"

		XFEL	ILC	FLASH design	9mA studies
Bunch charge	nC	1	3.2	1	3
# bunches		3250	2625	7200 [*]	2400
Pulse length	μs	650	970	800	800
Current	mA	5	9	9	9

 Stable 800 bunches, 3 nC at 1MHz (800 μs pulse) for over 15 hours (uninterrupted)

- Several hours ~1600 bunches, ~2.5 nC at 3MHz (530 μs pulse)
- >2200 bunches @ 3nC (3MHz) for short periods

22-Oct-12 LCWS12 - Arlington, TX

FLASH: Stability

- 15 consecutive studies shifts (120hrs), and with no downtime
- Time to restore 400us bunchtrains after beam-off studies: ~10mins
- Energy stability with beam loading over periods of hours: ~0.02%
- Individual cavity "tilts" equally stable

23-April-12 KILC - Daegu, Korea

FLASH 9mA achievements: $2009 \rightarrow \text{present}$

High beam power and long bunch-trains (Sept 2009)

Metric	ILC Goal	Achieved
Macro-pulse current	9mA	9mA
Bunches per pulse	2400 x 3nC (3MHz)	1800 x 3nC 2400 x 2nC
Cavities operating at high gradients, close to quench	31.5MV/m +/-20%	4 cavities > 30MV/m

Gradient operating margins (Feb 2012)

Metric	ILC Goal	Achieved
Cavity gradient flatness (all cavities in vector sum)	2% ∆V/V (800μs, 5.8mA) (800μs, 9mA)	<0.3% Δ V/V (800 μ s, 4.5mA) First tests of automation for Pk/QI control
Gradient operating margin	All cavities operating within 3% of quench limits	Some cavities within ~5% of quench (800us, 4.5mA) First tests of operations strategies for gradients close to quench
Energy Stability	0.1% rms at 250GeV	<0.15% p-p (0.4ms) <0.02% rms (5Hz)
22-Oct-12	Global Design Effo	rt 12

STF Systems Tests at KEK

23-April-12 KILC - Daegu, Korea

Fermilab – NML SRF

Systems Tests

Fermilab NML: RF Unit Test Facility

23-April-12 KILC - Daegu, Korea

ίiί

ATF2 – Beam size/stability and kicker tests

2010年10月19日 2010年

22-Oct-12 LCWS12 - Arlington, TX

ATF-2 earthquake recovery

- Vertical beam size (2012) = 167.9 plus-minus nm
- 1 sigma Monte Carlo
- Post-TDR continue to ILC goal of 37 nm + fast kicker
- Stabilization studies

22-Oct-12 LCWS12 - Arlington, TX

eCloud R&D

<u>Mitigating Electron Cloud</u>

- Simulations electrodes; coating and/or grooving vacuum pipe
- Demonstration at CESR critical tests

EC Working Group Baseline Mitigation Plan

EC Working Group Baseline Mitigation Recommendation				
	Drift*	Dipole	Wiggler	Quadrupole*
Baseline Mitigation I	TiN Coating	Grooves with TiN coating	Clearing Electrodes	TiN Coating
Baseline Mitigation II	Solenoid Windings	Antechamber	Antechamber	
Alternate Mitigation	NEG Coating	TiN Coating	Grooves with TiN Coating	Clearing Electrodes or Grooves

*Drift and Quadrupole chambers in arc and wiggler regions will incorporate antechambers

- Preliminary CESRTA results and simulations suggest the presence of *subthreshold emittance growth*
 - Further investigation required
 - May require reduction in acceptable cloud density ⇒ reduction in safety margin
- An aggressive mitigation plan is required to obtain optimum performance from the 3.2km positron damping ring and to pursue the high current option

S. Guiducci, M. Palmer, M. Pivi, J. Urakawa on behalf of the ILC DR Electron Cloud Working Group

Proposed Design changes for TDR

RDR

İİL

- Single Tunnel for main linac
- •Move positron source to end of linac ***
- Reduce number of bunches factor of two (lower power) **
- Reduce size of damping rings (3.2km)
- Integrate central region

22-Oct-12 LCWS12 - Arlington, TX

22-Oct-12 LCWS12 - Arlington, TX

Conventional Facilities

Japan -- New Tunnel Shape

RDR two tunnel design (2007)

TDR mountain sites

22-Oct-12 LCWS12 - Arlington, TX

TDR Technical Volumes

22-Oct-12 LCWS12 - Arlington, TX

EDMS & Tech. Design Documentation

ir iii

ILC Costs -- Impact of Top Level Changes

- RDR estimate = starting point 6,618 Δ
- Caverns, DR & cool Value Eng. -86 -1.3%
- 1 stage B.C. (not yet considered) -33 -0.5%
- Alternative RF (1 tunnel for ML, ½ bunches) Klystron Cluster/DRFS -400/-419 -6.2%
- DR (6.4 => 3.2 km, ½ bunches) -191 -2.9%
- Central Injector Complex -104 <u>-1.6%</u>
- Sub-total of SB2009 changes estimated -10.7%
- Did not consider range of cavity gradients nor details of alternating e+ production at 150 GeV

Starting Point is the RDR Costs

- 6.6 Billion ILC Units (2007 US \$) + 24 Million hours of Institutional Labor (which includes laboratories and universities, but not vendors or contractors)
- TDR will quote estimate in 2012 US \$, need consider:
- Difference in Exchange Rates

In 2006-07:	1\$= 117¥	1€ =\$1.20
1/1/2011:	1 \$ = 81.5 ¥	1€ =\$1.334
now 5/10/2011:	: 1\$ = <mark>80.6</mark> ¥	1€ =\$ <mark>1.43</mark>

- 4 yr escalation from 1/1/2007 => 1/1/2011 Index Links
 - US construction, technical goods
 -2.1%, 8.6%
 - Germany construct., indust. products 10.5%, 5.7%
 - Japan construction, industrial products 3.4%, 1.1%

OECD PPP (Yen/USD)-annual average by year PPP = Purchasing Power Parity

EX-exchange rate GDP: PPP based on all goods/services in GDP of each region M&E: PPP based on machinery and equipment Const: PPP based on civil construction

Full PPP determinations were done for 2005 and 2008; other year points based on GDP inflation rates

22-Oct-12 LCWS12 - Arlington, TX

Higgs Factory – Energy

- ~125 GeV from LHC
 Staging / Upgrading
 − 125+91=216 GeV cm → 250 GeV
- 173 GeV Top quark

 2x173=346 GeV cm → 350-400 GeV
- Higgs self coupling (t-coupling) ???
 ≥ 500 CM (up to 650 ??)
- TeV and beyond?

IC250 GeV CM (first stage)ICRelative to TDR 500 GeV baseline

Two stage compressor (5-<u>15 GeV</u>)

22-Oct-12 LCWS12 - Arlington, TX

Y. Okada - CPM12 Fermilab

ILC Plan in Japan

(After the discovery of a Higgs-like particle)

- Japanese HEP community proposes to host ILC based on the "staging scenario" to the Japanese Government.
 - ILC starts as a 250GeV Higgs factory, and will evolve to a 500GeV machine.
 - o Technical extendability to 1TeV is to be preserved.
- It is assumed that one half of the cost of the 500GeV machine is to be covered by Japanese Government. However, the share has to be referred to inter-governmental negotiation.

•18

Two Candidate Sites in Asia/Japan

22-Oct-12 LCWS12 - Arlington, TX

GDE Conclusions

- The major R&D milestones for TDR are in-hand
- The TDR will be a self-contained comprehensive R&D report; with a design based on new baseline; a new value costing; and a section on project implementation planning
- Submit: Dec 2012; Reviews of technical design & costs;
 - <u>Technical Review</u> by augmented PAC (Dec 2012 at KEK)
 - <u>Cost Review</u> by international committee (Jan 2013 at Orsay)
 - <u>TDR Overall Review</u> by ILCSC (Feb 2013 at Vancouver)
- Revise, rewrite as needed; finalize and submit to ICFA at LP2013 (June 2013)

GDE Mandate Complete

• Post–TDR ILC program: 1) extend energy reach; 2) systems tests; 3) evolve design based on technology development and LHC results; consider staged design, beginning with Higgs Factory.

22-Oct-12 LCWS12 - Arlington, TX