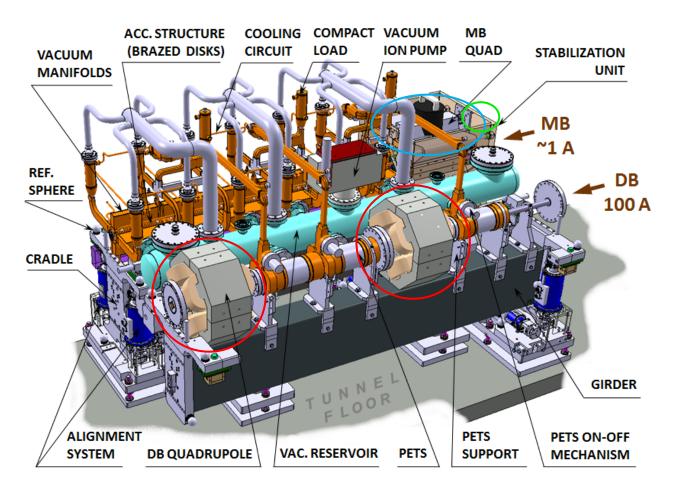
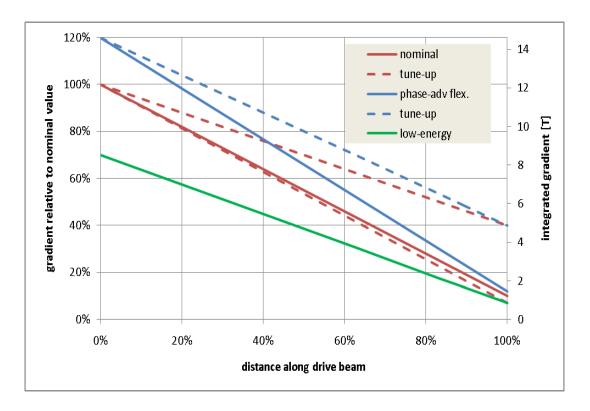
Status of Magnet R&D for the CLIC "2-Beams Modules"

Michele Modena, CERN-TE/MSC



Three types of magnet are present on the CLiC Modules:

a) Drive Beam Quadrupoles (DBQ)


- b) Main Beam Quadrupoles (MBQ)
- c) Steering correctors for the MBQ

For all them we have launched an R&D followed by prototype procurement.

1) Drive Beam Quadrupole R&D Status:

a) <u>Electro-Mechanical Design</u> Prototypes procurement:

- 2 first units (over 8) delivered to CERN from Danfysik (DK)
 Magnetic Measurements ongoing: first results very positive
- The MM results will give the OK to proceed (or to modify the pole profiles) on the commplition of the other 6 units.
- Pole profile final machining done by EDM technique on the 4 quadrants together.

a) <u>Electro-Mechanical Design</u> Prototypes procurement:

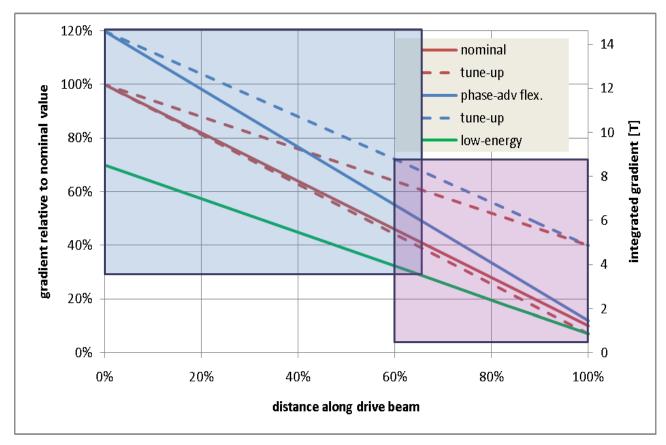

<u>Very successful Power Test results of this week</u>: final optimization of the magnet done with Danfysik was very efficient!

Main Parameters

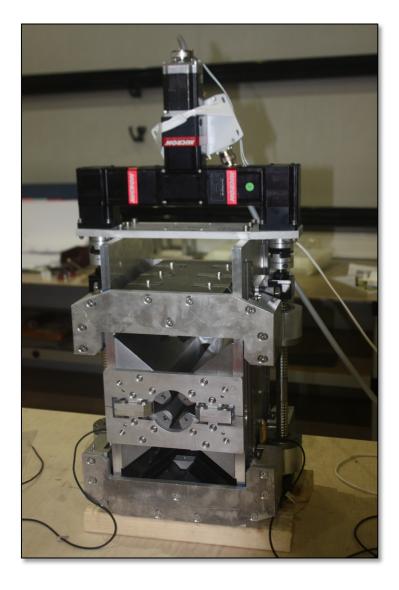
Aperture Ø	26 mm
Mag. Length	192 mm
Nom. Grad.	61 T/m
Nom Gdl	12.18 T
Max. Gdl	14.6 T
Nom. Length	281 mm
Nom. Width	390 mm
Weight	~ 170 kg
Meas.Nom. Gdl	12.18 T
Max. Meas. Gdl	14.73 T
Meas. Current	82.6
Meas. Voltage	6.87
Meas. Nom. Power	567 W
Max. Power (at 120%)	1055 W
Cu conduct.	6X6 mm ²
N. Of turn	208
Nom. Water flow	1.8 l/min
Nom. Press.drop	3 bar
Nom. Δ T	4 °C

Excitation curve & main parameters

(Estimation from 1st magnet design as presented at LCWS11 in Granada)

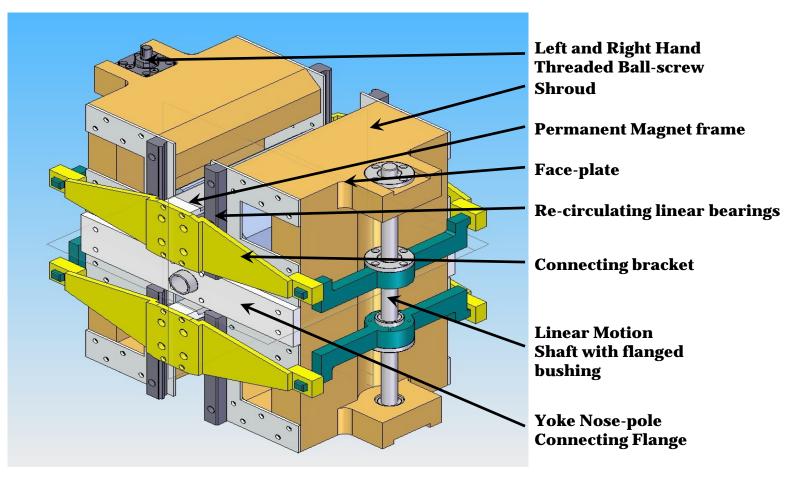


		i			
CLIC DB Quadrupole Parameters	Units				
Parameters		MAGNET			
Magnet size H×S×L	[mm×mm×mm]		390×390×286		
Magnet mass	[kg]	149.2			
Full aperture	[mm]		26		
Good field region(GFR) diameter	[mm]		11×2=22		
		YOKE			
Yoke size H×S×L	[mm×mm×mm]		390×390×180		
Yoke mass	[kg]		29.4×4=117.6		
		COIL			
Hollow Conductor size	[mm]		6×6, Ø=3.5		
Number of turns per coil			52		
Total conductor mass	[kg]		31.6		
			Operation mode		
		10% of nominal	Nominal	120% of nominal	
Effective length	[mm]	194.7	194	192.5	
Gradient at Z=0	[T/m]	6.26	62.78	75.85	
Integrated gradient ∫Gd1	[T]	1.218	12.18	14.6	
Integrated gradient quality in GFR	%	0.04	0.01	0.02	
• · · · ·		Electrical parameters		•	
Ampere turns per pole	[A]	432	4840	9100	
Current	[A]	8.3	93	175	
Current density	[A/mm ²]	0.3	3.6	6.8	
Total resistance	[mOhm]	99	99	99	
Total inductance	[mH]	40	40	40	
Voltage	[V]	0.82	9.2	17.3	
Power	[kW]	0.007	0.86	3.03	
COOLING		Air (natural convection)	Water	Water	
Cooling circuits per magnet			4	4	
coolant velocity	[m/s]		1.1	1.9	
cooling flow per circuit	[1/min]		0.6	1.1	
Pressure drop	[bar]		2.2	5.7	
Reynolds number			4122	8210	
Temperature rise	[K]		5	10	


b) Tunable <u>Permanent Magnet Design</u> Prototypes procurement by Cockcroft Institute <u>(Ben Shepherd, Norbert Collomb, Jim Clarke, Neil Marks)</u>

Two Versions, a STRONG and a WEAK are under design and procurement to cover the full range of gradient needed along the Decelerators (Drive Beam) for the CLIC 3TeV layout

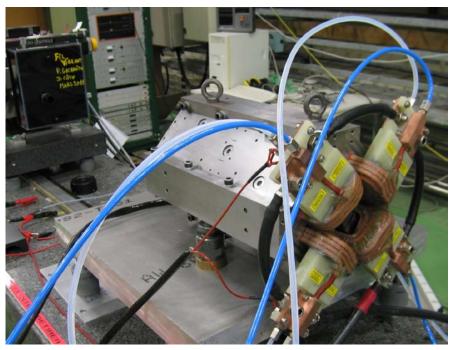
b1) Tunable <u>Permanent Magnet Design</u> Prototypes procurement: <u>STRONG</u> Version:


Completed Phase 1 assembly (i.e. complete assembly, commissioning of actuators, gearbox, linear encoders, etc.)
MM with Hall probe done
Analyzing data and improving mechanics: some mechanics modification on iron poles fixation was needed and is under going
Complete re-assembly and 2nd commissioning are ongoing
Magnet measured at Cockcroft by Hall probes system.

Prototype it is now at CERN and will be measured at the beginning of November by stretched wire and rotating coil MM Systems.

b2) Tunable <u>Permanent Magnet Design</u> Prototypes procurement: <u>WEAK</u> Version

- Conceptual Design completed
- •Magnet modelling and CAD ongoing
- •First interaction with CERN for Modules integration checks.
- •Delivery to CERN expected in 2013



2) Main Beam Quadrupole R&D Status:

2) Main Beam Quadrupole R&D Status:

TYPE1		TYPE2		TYPE3		TYPE4	
Aperture (Ø)	10 mm						
Length	420 mm	Length	920 mm	Length	1420 mm	Length	1920 mm
Gradient	200 T/m						
Current density	6.1 A/mm2						
Current	126 A						
Voltage	8 V	Voltage	16 V	Voltage	24 V	Voltage	30.4 V
Power	990W	Power	1980 W	Power	2970 W	Power	3831 W
Weight	85 kg	Weight	170 kg	Weight	280 kg	Weight	370 kg
Cooling circuit per magnet	1	Cooling circuit per magnet	2	Cooling circuit per magnet	4	Cooling circuit per magnet	4
Coolant velocity [m/s]	1.12 m/s	Coolant velocity [m/s]	1.12 m/s	Coolant velocity [m/s]	0.87 m/s	Coolant velocity [m/s]	1.12 m/s
Cooling flow [l/min]	0.69 l/min	Cooling flow [l/min]	0.69 l/min	Cooling flow [l/min]	0.53 l/min	Cooling flow [l/min]	0.69 l/min
Pressure drop [bar]	4.26 bar	Pressure drop [bar]	4.26 bar	Pressure drop [bar]	2.06 bar	Pressure drop [bar]	4.26 bar
Reynolds number	6147	Reynolds number	6147	Reynolds number	4757	Reynolds number	6147
Temperature rise [K]	20 K						

The first 2 prototypes TYPE1 and TYPE4 (1st Generation) procured in 2010. ...Poles profiles were not of the required quality.

2) Main Beam Quadrupole R&D Status:

The 2nd generation MBQ Type 1 prototypes quadrants were delivered after the Summer 2012 from two Suppliers (DMP and Ostroj) and were precisely measured at CERN Metrology Lab.

Especially the quadrants from DMP seems very well machined (inside a tolerance of $\pm 10\mu$).

The quadrants of Ostroj seems to be all inside a $\pm 30\mu$ tolerance.

In respect to 1st MBQ generation this two prototypes has a revised pole profile (set of circular segments instead of hyperbola + tips) and the one of DMP has also a revised (more massive) external cross section.

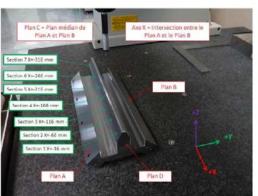
A special campaign, supported by ad-hoc test pieces, is ongoing to find the most efficient and precise assembly method to guarantee the micrometric assembly of the quadrants.

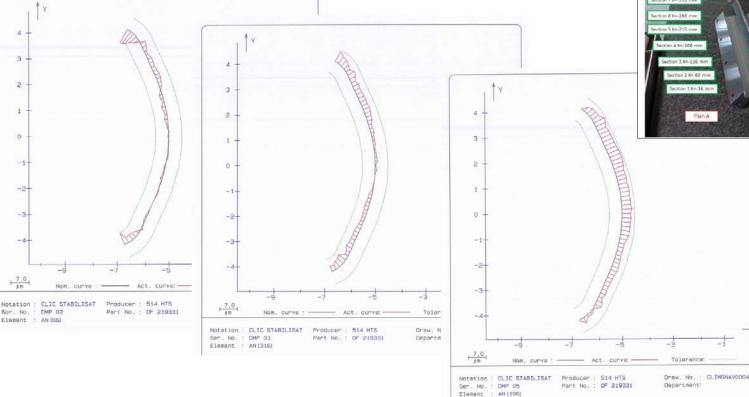
Magnetic measurements will follow.

3

1

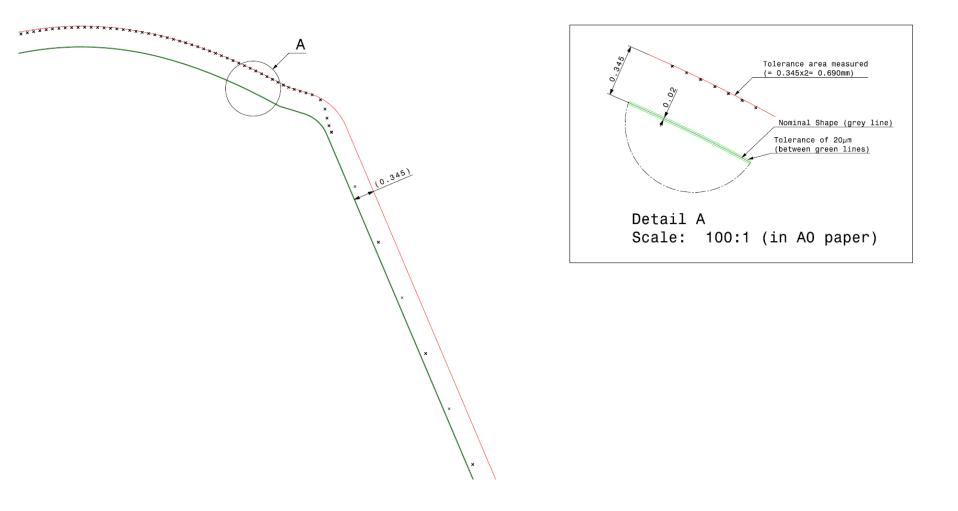
0


<u>2nd Generation MBQ</u> Prototypes procurement:


Below are shown results of quadrant measurements (extracted from Manufacturer measurements).

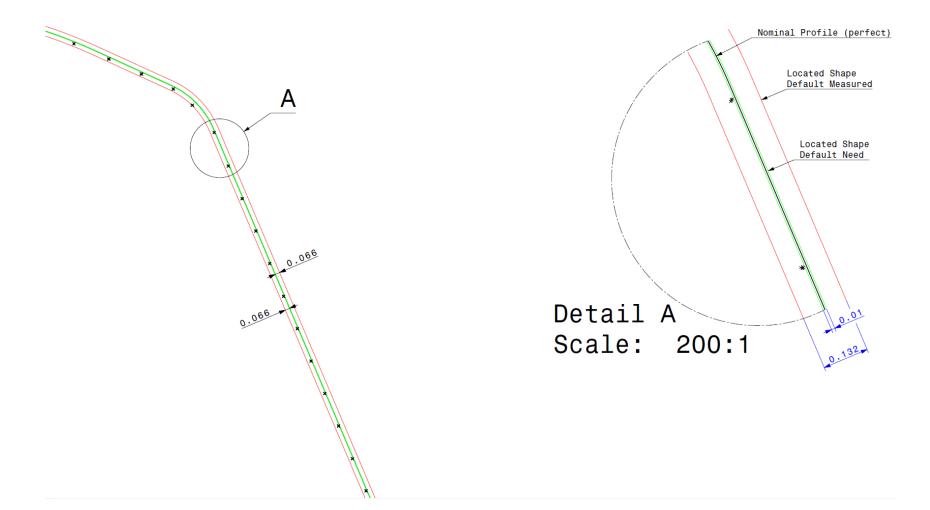
Only magnetic measurements will say the final world about quality, from accelerator point of view, for such type of quadrants. This seems the best quality that we can reasonably achieve with grinding technique for TYPE1 quadrants.

For TYPE4 (~ 1800 mm length) the same tolerances seems not achievable, identification of best potential Suppliers is ongoing.



3 cases of (IMPROVING Quality) MBQ iron quadrants for Type1 (~ 300 mm length) <u>CASE A</u> (2010): major Non Conformities in:

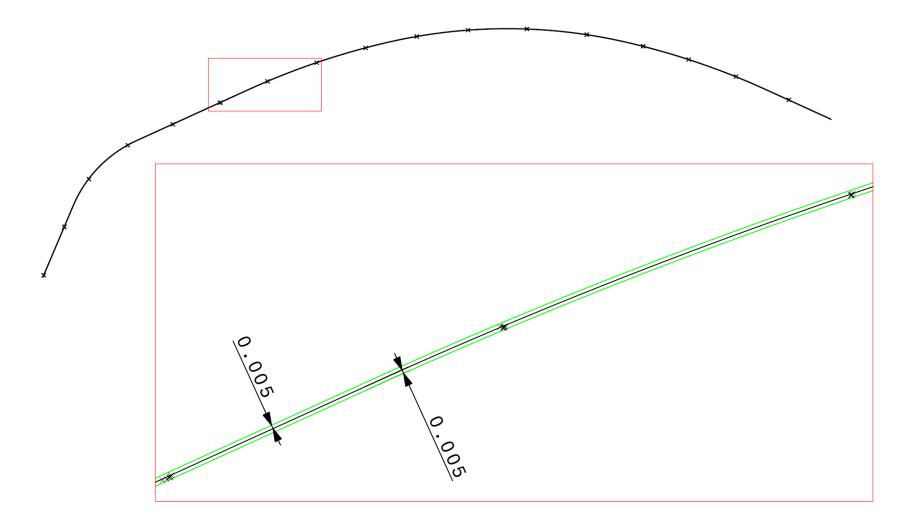
- offset of the pole profile of ~ 350 μm
- pole profile outside of the specified tolerance of \pm 10 μ



3 case of (IMPROVING Quality) MBQ iron quadrants for Type1 (~ 300 mm length) <u>CASE B (2012)</u>:

- pole profile close to the tolerance of \pm 10 μ

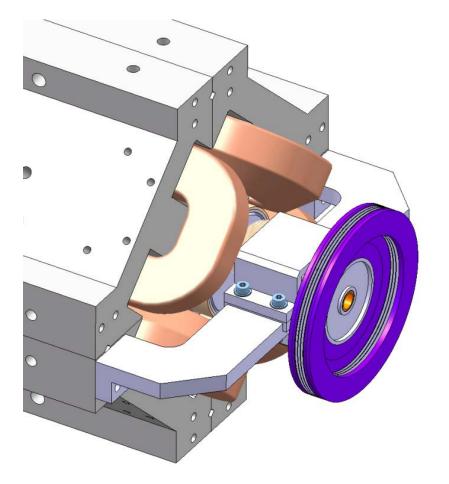
- extremely good longitudinal behavior on the measured 7 cross-sections ; each "x" is in fact a cluster of 7 "x" (practically coincident)

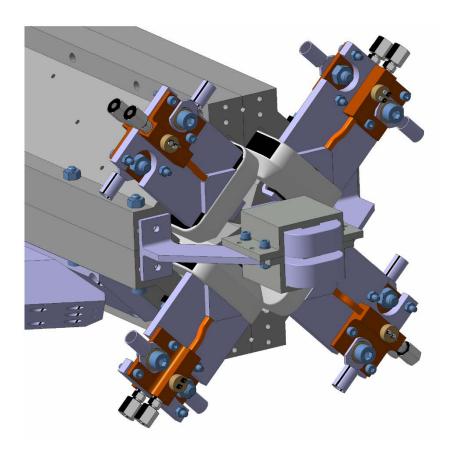


3 case of (IMPROVING Quality) MBQ iron quadrants for Type1 (~ 300 mm length) <u>CASE C (2012)</u>:

- pole profile INSIDE a tolerance of $\pm 7\mu$

- extremely good longitudinal behavior on the measured 7 cross-sections ; each "x" is in fact a cluster of 7 "x" (practically coincident)




3) **Steering correctors** for MBQ R&D Status:

3) MBQ Steering correctors R&D Status:

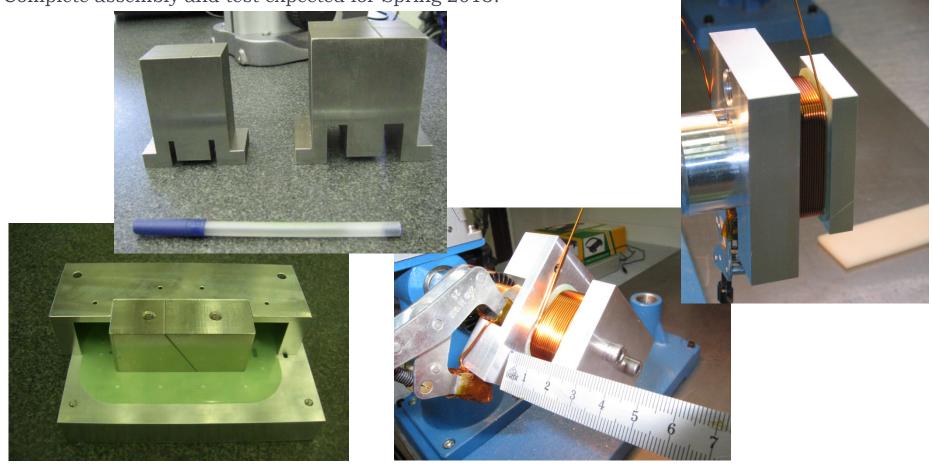
Steering correctors for the MBQ (TYPE1 and 4) design completed and decision to procure two prototypes was taken. This mainly in order to check their functioning and impact on the stabilization system (the magnet will be pulsed at 100 Hz). Integration in the module it is also well advance. Assembly on Modules for LAB Tests Program not yet decided.

3) MBQ Steering correctors R&D Status:

/	<u> </u>			
	Type 1	Dipole corrector Type 1, laminated yoke, air- cooled		
	Total magnet length	~59 mm		
	Total magnet width × height	48 mm x 52 mm		
	Total magnet mass	0.61 kg		
	Vertical full aperture	12 mm		
	Good Field Region(GFR) radius	4 mm		
	Nominal field strength in magnet centre			
	$B_v(0,0,0)$	0.0237 at 114 A		
	Nominal integrated field strength $\int B_{v(0,0,Z)} dz$	1.16×10 ⁻³ Tm		
	Magnetic length	~ 49mm		
	Integrated field homogeneity			
	∆∫Bydz / ∬B _{v(0,0,Z)} dz inside GFR	< ± 0.03%		
		bke		
	Steel type	M270-50A		
	Yoke length	59 mm		
	Yoke width x height	48 mm x 52 mm		
	Lamination thickness	0.5 mm		
	Packing factor	< 97 %		
	Yoke mass	0.208×2=0.416 kg		
		oil		
	Number of coils per magnet	2		
	Number of turns per coil	8×14=112		
	Conductor type, dimension	round, Ø=0.9 mm		
	Conductor mass per 1 m	5.7×10 ⁻³ kg/m		
	Average turn length	0.148 m		
	Conductor length per coil	16.6 m		
	Conductor mass per coil	94.5×10 ⁻³ kg		
	Conductor insulation thickness	0.05 mm		
	Max. conductor overall diameter	1.02 mm		
	Ground insulation thickness	0.5 mm		
	Electrical parameters (DC) for the nominal integrated field of 1.16×10^{-3} Tm			
	Ampere turns per pole	114 A		
	Current	1.018 A		
	Current density	1.6 A/mm ² 0.93 W		
	Power consumption (DC) Voltage on magnet (DC)	0.95 W 0.91 V		
	Total resistance at 20 ^o C	896 Ω		
	Total inductance	9.4 mH		
		ling		
	Air, natural convection	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Operation parameters			
	Operation mode	PULSED		
	Repetition frequency	100 [Hz]		
	Total cycle time	10 [ms]		
	Rise time for 25% of full scale	2 [ms]		
	Flat top time	2 [ms]		
	Total analyzing time at new/old level	6 [ms]		
	Voltage on magnet at ramp end	2.1 V		
	Max. current ramp	127.3 A/s		

Type 4	Dipole corrector Type 4, laminated yoke, air- cooled			
Total magnet length	~98 mm			
Total magnet width × height	70 mm × 72 mm			
Total magnet mass	~2.1 kg			
Vertical full aperture	12 mm			
Good Field Region(GFR) radius	4 mm			
Nominal field strength in magnet centre $B_{\nu}(0,0,0)$	0.0561 T			
Nominal integrated field strength $]B_{y(0,0,Z)}dz$	4.057 ×10 ⁻³ Tm			
Magnetic length	~ 72.3 mm			
Integrated field homogeneity				
Δ [Bydz /][B _{y(0,0,2)} dz inside GFR	$<\pm 0.03\%$			
	ke			
Steel type	M270-50A			
Yoke length	60 mm			
Yoke width x height	70 mm × 72 mm			
0				
Lamination thickness	0.5 mm < 97 %			
Packing factor				
Yoke mass	$0.55 \times 2 = 1.1 \text{ kg}$			
	pil			
Number of coils per magnet	2			
Number of turns per coil	17×22=374			
Conductor type, dimension	round, Ø=0.9 mm			
Conductor mass per 1 m	5.7×10 ⁻³ kg/m			
Average turn length	0.223 m			
Conductor length per coil	83.402 m			
Conductor mass per coil	0.475 kg			
Conductor insulation thickness	0.05 mm			
Max. conductor overall diameter	1.02 mm			
Ground insulation thickness	0.5 mm			
Electrical parameters (DC) for the non	ninal integrated field of 4.057 ×10 ⁻³ Tm			
Ampere turns per pole	270 A			
Current	0.722 A			
Current density	1.14 A/mm ²			
Power consumption (DC)	2.35 W			
Voltage on magnet (DC)	3.26 V			
Total resistance at 20°C	4.51 Ω			
Total inductance	162 mH			
	ling			
Air, natural convection				
Operation parameters				
Operation mode	PULSED			
Repetition frequency	100 Hz			
Total cycle time	10 ms			
Rise time for 25% of full scale	2 ms			
Flat top time	2 ms			
Total analyzing time at new/old level	6 ms			
Voltage on magnet at ramp end	17.9 V			
Max. current ramp	90.2 A/s			
max. cuttent tamp	70.4 5/3			

3) MBQ Steering correctors R&D Status:


2 sets of laminated iron yokes (0.5 mm lamination thickness) under procurement with two different suppliers. <u>The key point of these small magnets is the tolerance on some surfaces (very tight; targeting the 10 µm range)</u>

Precise pole shapes and mating surfaces are machined by wire cutting (EDM) technology.

Firs set at CERN under machining now.

Coils winding and curing are ongoing at CERN by TE/MSC-MNC Section.

Complete assembly and test expected for Spring 2013.

