

LCWS12, Arlington

J. S. Marshall, M. A. Thomson University of Cambridge

Introduction

Aims

- Investigate a number of Higgs measurements in the first stage of possible CLIC operation
- Focus on 350 GeV and 500 GeV
 - A) Recoil mass analysis at 350 GeV
 - B) HZ → bbqq analysis at 500 GeV
 - C) Hvv \rightarrow bbvv at analysis at 500 GeV
- All based on full simulation of CLIC environment/detector concept

Assumptions

$$\sqrt{s} = 350, 500 \text{GeV}$$

 $L_{\text{int}} = 500 \text{fb}^{-1}$
 $M_{\text{H}} = 120 \text{GeV}$
No polarization

Detector: CLIC_ILD_CDR500

- The model-independent recoil analyses of the Higgsstrahlung process.
- Reconstruct the Z from its decay products, then infer the Higgs four-vector by subtracting the Z four-vector from the initial state four-vector.
- Z can be reconstructed cleanly in $Z \rightarrow \mu \mu$ ($\mu \mu X$) and $Z \rightarrow ee$ (eeX) channels. Precision depends on lepton momentum resolution and effects of beamstrahlung/ISR.
- Potential backgrounds are any processes producing a lepton pair in final state.
- Two-fermion backgrounds proved simple to remove and so neglected here.
- Four-fermion backgrounds much more difficult.

WHIZARD	Cross-section	Cross-section	Events	Available
Process Id.	/ fb	(gen. cuts) / fb	/ 500fb ⁻¹	events
hzmumu (signal)	4.855	4.855	2 4 2 7	132 867
e2e2ff	4753	913.4	456 700	104 790
hzee (signal)	4.850	4.850	2 4 2 5	128 871
e1e1ff	4 847	1 608	804 000	134730

Generator-level cuts for background samples e2e2ff and e1e1ff

 $p_{T |+|-} > 10 \text{GeV}$, cut on transverse momentum, calculated from vector sum of two leptons

 $|\cos\theta_{\text{\tiny I+/I-}}|$ < 0.95, cut on angle of either of leptons

• Identification of charged leptons is performed by PandoraPFA; allows for a rather simple signal-selection procedure at the analysis stage:

- 1. Loop over reconstructed particles.
- 2. Populate separate lists of negatively and positively charged leptons (of specified flavour).
- 3. If both lists are populated, event will be selected as a signal candidate.
- 4. If either list contains more than one entry, must investigate all possible pairings.
- 5. Select lepton pair producing invariant mass closest to the Z mass.

Background Rejection

•

•

Boosted Decision Tree

Fit Procedure

- Procedure was to develop models for the selected signal and background recoil mass distributions, allowing predicted distributions to be created for values of fit parameters: M_H, N_{sig} and N_{Bkg}
- Compare predictions with data and calculate negative log likelihood value; MINUIT controls parameter variation so as to identify best-fit values. $-\ln \mathscr{L} = \sum_{i=1}^{n_{bins}} n_{pred,j} - n_{obs,j} \ln(n_{pred,j})$

- Use Simplified Kernel Estimation to approximate signal shape by sum of many Gaussians. Possible because have high-statistics signal samples; avoids difficulty of finding function to describe signal.
- Fit low-statistics background sample with 4th order polynomial. Tests show this is a robust strategy.

- To assess measurement accuracy, create 1000 representative 500fb⁻¹ test "data" samples.
- Add high-statistics selected signal sample to smooth background function, then fluctuate.

2.5 % meas. of g_{H77}

Look at distribution of best-fit values

350 GeV Recoil		Mean	RMS	
	M_H	119 950.4 MeV	130.4 MeV	
μμΧ	ΔM_H	133.3 MeV	6.5 MeV	
	ΔN_{sig}	4.91 %	0.19 %	

- eeX channel introduces a new complication: Bremsstrahlung of final state electrons.
- Attempt to find Bremsstrahlung photons and adjust relevant electron four-momenta.
- This procedure increases number of events in recoil mass peak, but increases peak width.

350 GeV Recoil		Mean	RMS	
	M_H	119 915.3 MeV	302.5 MeV	
eeX	ΔM_H	299.8 MeV	30.4 MeV	
	ΔN_{sig}	8.08~%	0.64 %	
eeX	M_H	120 012.0 MeV	397.2 MeV	
Bremsstrahlung	ΔM_H	394.3 MeV	36.1 MeV	
recovery	ΔN_{sig}	7.93 %	0.59 %	

- A 500 GeV LC: measure Higgs cross-sections in a model-dependent manner.
- First HZ \rightarrow bbqq
 - Force events into four jets, then use kinematic fit to assign jet-pairs to Z and H. Backgrounds have final states that plausibly contain four jets.

Beam backgrounds...

 Jet reconstruction via k_t algorithm (consider three R values);

Analysis

 b-tagging via LCFI. Reject background with multivariate analysis using jet-shape and b-tagging info.

Kinematic Fit

- Kinematic fit using MarlinKinFit package. Inputs to the fit were the four jets in an event. The six possible unique assignments of the four jets to the H and Z were considered.
- Constraints:
 - $\sum_{i} E_{i} = 500 \text{ GeV}$ • $\sum_{i} (p_{x,i}, p_{y,i}, p_{z,i}) = (5,0,0) \text{ GeV}_{(\text{note beam-crossing 20 mrad})}$
 - Mass of one pair of jets equal to Z mass.
- Fit probability used to finalise assignment of jets to Z and H. The Z mass constraint was then removed to calculate final Z and H four-vectors.

WHIZARD Process Id.	hzqq	qqqq	qq	qq_nunu
Events passing kinematic fit	89 %	78%	21 %	1%

Background Rejection

- Distribution to right shows fitted Higgs mass distributions for signal and background events.
- Also show shapes of fitted Higgs mass distributions for each of the individual event samples.
- Background rejection via TMVA, using jet-shape variables and info from jet clustering and b-tagging.

Boosted Decision Tree

-hzqq

qqqq

0.06

Sphericity

--- qq

0.04

Normalised Events 0.1 20.02

0.8

0.85

Normalised Events 10⁻¹ -01 10⁻³

10-4

0

0.02

- BDT found to provide the best signal efficiency/purity.
- Final BDT cut chosen to maximise signal significance.
- Fitted Higgs mass distribution is as shown.
- Background approximated by 4th order polynomial.

-hzqq

-qqqq

--qq

0.8

Oblateness

study Events 10.03

Normalised E

0.2

0.4

0.6

---qq

0.95

0.9

-qqqq

Thrust

- Examine best-fit values for 1000 representative 500fb⁻¹ test "data" samples
 - Consider different cone sizes

• 1.6 % measurement of σ x BR

• Hvv at \sqrt{s} =500 GeV: contributions from Higgsstrahlung and WW-fusion.

Higgs Studies at CLIC

Normalised Events

10⁻³

From jet clustering

1000 2000 3000 4000 5000 6000

TMVA inputs:

- **Background Rejection**
- Distribution to right shows reconstructed Higgs mass distributions for signal and background events.
- Also show shapes of Higgs mass distributions for each of the individual event samples.
- Background rejection via TMVA, using jet-shapes and info from jet clustering and b-tagging.

J. S. Marshall

Normalised Events

- qqqq

d_{1,2}

10

10⁻²

10⁻³

From jet clustering

200

400

Boosted Decision Tree

- BDT found to provide the best signal efficiency/purity.
- Final BDT cut chosen to maximise signal significance.
- Higgs mass distribution for selected events is as shown.

Results

 Examine best-fit values and precisions for 1000 representative 500fb⁻¹ test "data" samples:

500 GeV	HVV	Mean	RMS
	M_H	120 034.3 MeV	94.7 MeV
R=0.7	ΔM_H	95.9 MeV	1.9 MeV
	ΔN_{sig}	1.061 %	0.007~%
R=1.0	M_H	120 015.0 MeV	98.4 MeV
	ΔM_H	97.2 MeV	1.6 MeV
	ΔN_{sig}	1.010%	0.007~%
R=1.3	M_H	120 006.5 MeV	109.7 MeV
	ΔM_H	110.8 MeV	2.4 MeV
	ΔN_{sig}	1.057 %	0.008~%

• 1.0 % measurement of $\,\sigma\,x\,\text{BR}$

- Examine p_T distribution for selected events in order to extract a measurement of the relative Higgsstrahlung and WW-fusion normalisations.
- Same selection + M_H > 95 GeV

• Relative HZ/WW normalisations can be determined with precision of 5.1%

• 2.5 % measurement of g_{HWW}/g_{HZZ}

★ μμX at 350 GeV:

★ bbqq at 500 GeV:

\star bbvv at 500 GeV:

2.5 % meas. of g_{HZZ}

1.6 % meas. of σ x BR

1.0 % meas. of $\,\sigma\,x\,\text{BR}$

2.5 % meas. of g_{HWW}/g_{HZZ}

Assumptions $L_{int} = 500 \text{ fb}^{-1}$, M = 120GeV, No polarization