Introduction	Theoretical Background 00000	Determination of F ^{tot} 0000000	Measurement Accuracies of F ^{tot} 000000000000	Summary	Backup Slides

Determination of the Higgs Decay Width at the ILC

Claude Fabienne Dürig

University of Bonn, Germany

October 2012

LCWS12 Arlington, Texas

Introduction	Theoretical Background 00000	Determination of F ^{tot} 0000000	Measurement Accuracies of F ^{tot} 000000000000	Summary	Backup Slides
Contents					

2 Theoretical Background
 • Higgs Production Processes
 • Total Decay Width Γ^{tot}_H

3 Determination of $\Gamma_{\rm H}^{\rm tot}$

- How to determine Γ_{H}^{tot}
- Signal and Background
- Measurement Accuracies of Γ^{tot}_H
 - Event Selection
 - Measurement Accuracies

Introduction	Theoretical Background 00000	Determination of F ^{tot} 0000000	Measurement Accuracies of F ^{tot} 000000000000	Summary	Backup Slides
Contents					

2 Theoretical Background
 • Higgs Production Processes
 • Total Decay Width Γ^{tot}_H

Determination of Γ^{tot}_H How to determine Γ^{tot}_H

- Signal and Background
- 4 Measurement Accuracies of Γ^{tot}_H
 - Event Selection
 - Measurement Accuracies

Introduction	Theoretical Background 00000	Determination of F ^{tot} 0000000	Measurement Accuracies of F ^{tot} 000000000000	Backup Slides
Introduc	tion			

- model-independent measurement of Higgs decay width
- $\sqrt{s} = 250 \text{ GeV}$ and $\mathcal{L} = 250 \text{ fb}^{-1}$
- aim of study: estimate the measurement accuracies of the total decay width obtainable at the ILC
- $m_{\rm H} = 120 \text{ GeV}, 126 \text{ GeV}, 130 \text{ GeV}, 140 \text{ GeV}$
- $\bullet~$ WW-fusion: $e^+e^- \longrightarrow \nu_e \bar{\nu}_e H$
- former study on the same topic for TESLA $\longrightarrow \sqrt{s} = 350 \text{ GeV}/500 \text{ GeV}$

NIELS MEYER: HIGGS-BOSONS AT TESLA: STUDIES ON PRODUCTION IN WW-FUSION AND TOTAL DECAY WIDTH (University of Hamburg, Germany, July 2000)

Introduction	Theoretical Background	Determination of Γ ^{τοτ} ΟΟΟΟΟΟΟ	Measurement Accuracies of F ^{tot} 000000000000	Summary	Backup Slides
Contents					

2 Theoretical Background
 • Higgs Production Processes
 • Total Decay Width Γ^{tot}_H

3 Determination of $\Gamma_{\rm H}^{\rm tot}$

- How to determine Γ_{H}^{tot}
- Signal and Background

Measurement Accuracies of Γ^{tot}_H

- Event Selection
- Measurement Accuracies

Introduction	Theoretical Background ●0000	Determination of F ^{tot} 0000000	Measurement Accuracies of F ^{tot} 000000000000	Summary	Backup Slides
Contents					

2 Theoretical Background
 • Higgs Production Processes
 • Total Decay Width Γ^{ott}_H

Determination of Γ_H^{tot} How to determine Γ_H^{tot}

- Signal and Background
- 4 Measurement Accuracies of Γ^{tot}_H
 - Event Selection
 - Measurement Accuracies

Introduction	Theoretical Background O●OOO	OOOOOOOO	Measurement Accuracies of T H	Summary	Backup Slides
Higgs P	roduction Proce	sses			

 σ (Higgs-strahlung) max.: $\sqrt{s} = m_{\rm H} + m_{\rm Z} \longrightarrow$ dominant at low \sqrt{s}

 σ (WW-fusion) dominant at high \sqrt{s}

Introduction	Theoretical Background ○○○●○	Determination of F ^{tot} 0000000	Measurement Accuracies of F ^{tot} 000000000000	Summary	Backup Slides
Contents	5				

2 Theoretical Background
 • Higgs Production Processes
 • Total Decay Width Γ^{tot}_H

- 3 Determination of $\Gamma_{\rm H}^{\rm tot}$
 - How to determine Γ_{H}^{tot}
 - Signal and Background

Measurement Accuracies of Γ^{tot}_H

- Event Selection
- Measurement Accuracies

	Theoretical Background	Determination of Γ ^{tot} Η	Measurement Accuracies of F ^{tot} 000000000000	Backup Slides
Contents				

Theoretical Background
 Higgs Production Processes
 Total Decay Width Γ^{tot}_H

3 Determination of $\Gamma_{\rm H}^{\rm tot}$

- How to determine Γ_{H}^{tot}
- Signal and Background

4 Measurement Accuracies of Γ^{tot}_H

- Event Selection
- Measurement Accuracies

Introduction	Theoretical Background 00000	Determination of Γ ^{tot} ●000000	Measurement Accuracies of F ^{tot} 000000000000	Summary	Backup Slides
Contents	;				

Theoretical Background
 Higgs Production Processes
 Total Decay Width Γ^{tot}_H

Determination of Γ^{tot}_H How to determine Γ^{tot}_H

Signal and Background

4 Measurement Accuracies of F^{tot}_H

- Event Selection
- Measurement Accuracies

MEYER,N.: Higgs-Boson at TESLA: Studies on Production in WW-Fusion and Total Decay Width, University of Hamburg, Germany, 2000

$$\mathsf{WW}\text{-}\mathsf{fusion}:\mathsf{e}^+\mathsf{e}^-\longrightarrow\nu_e\bar\nu_e\mathsf{H}\longrightarrow\nu_e\bar\nu_e\mathsf{b}\bar\mathsf{b}$$

Introduction	Theoretical Background 00000	Determination of F ^{tot} ○○○●○○○	Measurement Accuracies of F ^{tot} 000000000000	Summary	Backup Slides
Contents					

Theoretical Background
 Higgs Production Processes
 Total Decay Width Γ^{tot}_H

3 Determination of $\Gamma_{\rm H}^{\rm tot}$

- How to determine Γ_{H}^{tot}
- Signal and Background

4 Measurement Accuracies of Γ^{tot}_H

- Event Selection
- Measurement Accuracies

Iuminosity:
$$\mathcal{L} = 250 \text{ dec}^{-1}$$
polarisation: $P_{e^+e^-} = (0.3, -0.8)$

generating events: Whizard 1.95

Signal sample:

$$\overline{e^+e^- \longrightarrow \nu_1 \overline{\nu}_1 H} \qquad P_{e^+e^-} = (-1.0, +1.0) \\ P_{e^+e^-} = (+1.0, -1.0) \\ P_{e^+e^-} = (0.3, -0.8)$$

ILC Software (version 01-11)

- Mokka (mokka-07-06-p02)
 → detector model ILD_00
- Marlin (v01-00)
- LCTuple LCIO (v01-51-02)

<i>т</i> н[GeV]	$N(\nu_{I}\bar{\nu}_{I}H)$	$N(\nu_l \bar{\nu}_l b \bar{b})$
120	20 430	13 870
126	17 428	11 831
130	17 203	11 679
140	12 771	8 671

Introduction	Theoretical Background 00000	Determination of ΓH ○○○○○●○	Measurement Accuracies of FH 000000000000	Summary	Backup Slides
	centre of ma	ss energy: \sqrt{s}	$\overline{s} = 250 \text{ GeV}$		
	lı	uminosity: L	$C = 250 \text{ fb}^{-1}$		
	ро	larisation: $P_{e^+e^-}$	= (0.3, -0.8)		

WW-fusion contribution:

$m_{\rm H}[{\rm GeV}]$	$\sigma(\nu_{e}\bar{\nu}_{e}H)[fb]$	$N(\nu_e \bar{\nu}_e H)$	$\sigma({\sf H} o {\sf b} ar{\sf b})[{\sf f} {\sf b}]$	$N(v_e \bar{v}_e b \bar{b})$
120	18.08	4 520	12.26	3 065
126	13.71	3 426	9.30	2 325
130	13.37	3 343	9.06	2 266
140	9.59	2 398	6.50	1 626

Higgs-strahlung contribution:

m _H [GeV]	$\sigma(\nu_l \bar{\nu}_l H)[fb]$	$N(\nu_1 \bar{\nu}_1 H)$	$\sigma(H \rightarrow b\bar{b})[fb]$	$N(\nu_l \bar{\nu}_l b \bar{b})$
120	64.08	16 019	43.50	10 876
126	56.01	14 002	38.02	9 506
130	54.61	13 653	37.03	9 257
140	39.39	9 345	25.38	6 344

	Theoretical Background	Determination of Γ_{H}^{tot}	Measurement Accuracies of Γ_{H}^{tot}	Backup Slides
	00000	000000	00000000000 "	
Backgro	und Samples			

http://www-zeuthen.desy.de/ILC/physics/

 $\begin{array}{ll} \mbox{centre of mass energy:} & \sqrt{s} = 250 \ {\rm GeV} \\ \mbox{luminosity:} & \mathcal{L} = 250 \ {\rm fb}^{-1} \\ \mbox{polarisation:} \ {\cal P}_{{\rm e}^+{\rm e}^-} = (0.3, -0.8) \end{array}$

${\rm e^+e^-} \rightarrow$	$N_{ m bgrd}$
$\nu_l \bar{\nu}_l b \bar{b}$	30 562
$\nu_l \bar{\nu}_l q \bar{q}$	119 296
l⁺l−qą	299 741
qqlvı	1 730 574
qqqq	3 908 020
qq	$26.016\cdot 10^6$

$$\textit{N}_{bgrd}^{tot} = 32.104 \cdot 10^{6}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

	Theoretical Background 00000	Determination of F ^{tot} 0000000	Measurement Accuracies of F ^{tot} 000000000000	Backup Slides
Contents	5			

- Theoretical Background
 Higgs Production Processes
 Total Decay Width Γ^{tot}_H
- Determination of Γ^{tot}_H
 How to determine Γ^{tot}_H
 Signal and Background
- Measurement Accuracies of Γ^{tot}_H
 - Event Selection
 - Measurement Accuracies

Introduction	Theoretical Background 00000	Determination of F ^{tot} 0000000	Measurement Accuracies of Γ ^{tot} ●00000000000	Summary	Backup Slides
Contents	5				

- Theoretical Background
 Higgs Production Processes
 Total Decay Width Γ^{tot}_H
- 3 Determination of Γ^{tot}_H
 How to determine Γ^{tot}_H
 Signal and Background

Measurement Accuracies of Γ^{tot}_H

Event Selection

Measurement Accuracies

	Theoretical Background	0000000	Measurer 00000
	cutflow ($m_{\rm H} = 120~{\rm G}$	GeV)	
0	no cut		
1	$10 \le N_{\rm ctrk} \le$	40	n
2	no isolated lep	tons	
3	$m_{\rm H} - 20 { m ~GeV} \le m_{\rm vis} \le$	$m_{\rm H} + 10 { m ~GeV}$	
4	$100 \text{ GeV} \le E_{vis} \le$	160 GeV	
5	$20 \text{ GeV} \le \sum p_T \le$	80 GeV	
6	$Y_{23} \le 0.02$	2	n
7	$0.2 \leq Y_{12} \leq$	0.8	
8	btag ≥ 0.8	5	
9	$-60 \text{ GeV} \le p_z \le$	60 GeV	
10	$ \cos(heta_{ ext{jet}}) \leq 0$).95	

 $m_{\rm H} = 126~{
m GeV}$:

 $105 \; {\rm GeV} \le \textit{E}_{vis} \le 160 \; {\rm GeV}$

 $m_{\rm H} = 130~{
m GeV}$:

 $110 \text{ GeV} \le E_{vis} \le 160 \text{ GeV}$

 $m_{\rm H}=140~{\rm GeV}$:

 $125~{\rm GeV} \le \textit{E}_{vis} \le 170~{\rm GeV}$

Measurement Accuracies of Γ^{tot} 0●0000000000 mmary E

Backup Slide

	$m_{\rm H} = 120~{ m GeV}$			
	Nww	N _{ZH}	$N_{ m bgrd}^{ m tot}$	
no cut	4 525	16 019	$32.104\cdot10^6$	
cut	898	2 767	534	

	$m_{\rm H}=126~{ m GeV}$			
	Nww	N _{ZH}	$N_{\rm bgrd}^{\rm tot}$	
no cut	3 426	14 002	$32.104\cdot10^6$	
cut	507	2 546	449	

	$m_{\rm H}=130~{ m GeV}$			
	N _{ww}	N _{ZH}	$N_{\rm bgrd}^{\rm tot}$	
no cut	3 343	13 653	$32.104\cdot10^6$	
cut	401	2079	366	

	$m_{\rm H} = 140~{ m GeV}$				
	Nww	N _{ZH}	$N_{\rm bgrd}^{ m tot}$		
no cut	2 398	9 345	$32.104\cdot10^6$		
cut	190	759	433		

- WW-fusion ---- Higgs-strahlung background

Theoretical Background 00000	Determination of F ^{tot} 0000000	Measurement Accuracies of Γ ^{tot} 000000000000	Backup Slides

$$\sigma(\text{WW-fusion}) = \frac{\sigma_{\text{fus}}(\text{H} \to \text{b}\bar{\text{b}})}{BR(\text{H} \to \text{b}\bar{\text{b}})} \longrightarrow \frac{N'_{\text{WW}}}{\epsilon \cdot \mathcal{L} \cdot BR(\text{H} \to \text{b}\bar{\text{b}})}$$

WW-fusion and Higgs-strahlung can be separated by exploiting their different characteristics in the $\nu\bar\nu$ invariant mass

 $\chi^2\text{-fit}$ on missing mass distribution

normalised MC as reference

Fit-parameter: N'_{WW} , N'_{bgrd} , N'_{ZH}

00000 000000 ° 0000 000 °	Theoretical Background	Determination of Γ_{H}^{tot}	Measurement Accuracies of Γ_{H}^{tot}	Backup Slides
	00000	0000000 "	00000000000	

$$\frac{\Delta N_{\rm WW}'}{N_{\rm WW}'} ~~\&~~ \frac{\Delta BR({\rm H} \rightarrow {\rm b}\bar{\rm b})}{BR({\rm H} \rightarrow {\rm b}\bar{\rm b})}^* ~~\longrightarrow~~ \frac{\Delta \sigma({\rm WW-fusion})}{\sigma({\rm WW-fusion})}$$

data taken from:

*H.ONO, A.MIYAMOTO: Higgs Branching Fraction Study in ILC, arXiv:1202.4955v1 [hep-ex];

**G.Borisov, F.Richard: Precise measurement of Higgs decay rate into WW* at future e^+e^- -Linear

Colliders, arXiv:hep-ph/9905413v1

Introduction	Theoretical Background 00000	Determination of F ^{tot} 0000000	Measurement Accuracies of Γ ^{tot} ○○○○○●○○○○○	Summary	Backup Slides
Contents	5				

- 2 Theoretical Background
 Higgs Production Processes
 Total Decay Width Γ^{tot}_H
- Determination of Γ^{tot}_H
 How to determine Γ^{tot}_H
 Signal and Background
- Measurement Accuracies of Γ^{tot}_H
 - Event Selection
 - Measurement Accuracies

ntroduction	00000	0000000	00000000000000000000000000000000000000		Backup Slides
Results fo	or $m_{\rm H}=120~{ m Ge}$	eV			
10 ⁰ Introduction of events / 20e V 10 10	50 100		$\frac{\Delta BR(H \to b\bar{b})}{BR(H \to b\bar{b})} = 2.7\%$ $\frac{\Delta BR(H \to WW)}{BR(H \to WW)} = 5.4\%$ $\frac{Fit result:}{873 \pm 58}$	$\frac{N'_{\rm ZH} \pm \Delta N'_{\rm ZH}}{2666\pm66}$	
700 007/510 000 000 000 000 000 000 000 000 0000 0000		WW-tusion Higgs-strahlung background fit result simulated data 120 140 100	$ \begin{array}{c c} & & \Delta N'_{WW} & \Delta N'_{ZH} \\ \hline & & & M'_{WW} & N'_{ZH} \\ \hline & & 6.64\% & 2.48\% \\ \hline & \longrightarrow & \Delta \Gamma_{H}^{tot} / \Gamma_{H}^{tot} = \end{array} $	$ \frac{\Delta \sigma (WW-fusio}{\sigma (WW-fusion)} 7.2\% $	<u>n)</u>

ntroduction	Theoretical Background 00000	Determination of F ^{tot} 0000000	Measurement Accuracies of F ^{tot} 00000000000000	Summary Ba	ckup Slides
Results f	for $m_{\rm H}=126~{ m G}$	eV			
AB27 / Sthere of events / 2021 / Sthere of events / 100			$\frac{\Delta BR(H \rightarrow b\bar{b})}{BR(H \rightarrow b\bar{b})} = 3.0\%$ $\frac{\Delta BR(H \rightarrow WW)}{BR(H \rightarrow WW)} = 4.6\%$ $\frac{Fit result:}{N'_{WW} \pm \Delta N'_{WW}}$ 50 $\frac{N'_{WW} \pm \Delta N'_{WW}}{512 \pm 54}$	$\frac{N_{\rm ZH}'\pm\Delta N_{\rm ZH}'}{2497\pm85}$	
7002 255 0027 / stress 200 0020 1 155 1 100 1 100 1 000 50 0 0			$ \rightarrow \begin{bmatrix} \frac{\Delta N'_{WW}}{N'_{WW}} & \frac{\Delta N'_{ZH}}{N'_{ZH}} \\ 10.54\% & 3.4\% \\ \hline \Delta \Gamma_{H}^{tot} / \Gamma_{H}^{tot} = \\ \end{bmatrix} $	$ \frac{\Delta \sigma (WW-fusion)}{\sigma (WW-fusion)} $ 10.96 %	-

	Theoretical Backgrour 00000	d Determination of Γ ^{tot} 0000000	Measurement Accuracies of Γ ^{tot} 00000000000000	Summary Ba	ckup Slides
Results	for $m_{\rm H}=130$) GeV			
number of events / 2Ge V 01			$\frac{\Delta BR(H \rightarrow b\bar{b})}{BR(H \rightarrow b\bar{b})} = 3.5\%$ $\frac{\Delta BR(H \rightarrow WW)}{BR(H \rightarrow WW)} = 3.3\%$ $\frac{\text{Fit result:}}{N_{WW}' \pm \Delta N_{WW}'}$ $\frac{N_{WW}' \pm \Delta N_{WW}'}{407 \pm 46}$	<u>N'_{2H} ± ΔN'_{2H}</u> 1978 ± 78	
7252 11 11 12 12 12 12 12 12 12 12 12 12 12 1	20	WW-fusion Higgs-strahlung background fit result simulated data	$ \begin{array}{c c} & \Delta N'_{WW} & \Delta N'_{ZH} \\ \hline & \overline{N'_{WWW}} & \overline{N'_{ZH}} \\ \hline & 11.3\% & 3.89\% \\ \hline & \longrightarrow & \Delta \Gamma^{tot}_{H}/\Gamma^{tot}_{H} = \end{array} $	$\frac{\Delta\sigma(\text{WW-fusion})}{\sigma(\text{WW-fusion})}$ 11.83 %	_

* MEYER, N.: Higgs-Boson at TESLA: Studies on Production in WW-Fusion and Total Decay Width, University of Hamburg, 2000

Introduction	Theoretical Background 00000	Determination of Γ ^{τοτ} ΟΟΟΟΟΟΟ	Measurement Accuracies of F ^{tot} 000000000000	Summary	Backup Slides
Contents					

2 Theoretical Background
 • Higgs Production Processes
 • Total Decay Width Γ^{tot}_H

Determination of Γ^{tot}_H How to determine Γ^{tot}_H

- Signal and Background
- 4 Measurement Accuracies of Γ^{tot}_H
 - Event Selection
 - Measurement Accuracies

	Theoretical Background	Determination of F ^{tot} 0000000	Measurement Accuracies of F ^{tot} 000000000000	Summary	Backup Slides
Summar	у				

- model-independent measurement of σ (WW-fusion) and $\Gamma_{\rm H}^{\rm tot}$
- WW-fusion: $e^+e^- \longrightarrow \nu_e \bar{\nu}_e H \longrightarrow \nu_e \bar{\nu}_e b\bar{b}$
- determining σ (WW-fusion) \rightarrow information on $g_{HWW} \rightarrow \Gamma_{H}^{tot}$
- challenging at $\sqrt{s} = 250 \text{ GeV}$: large background/Higgs-strahlung contribution, small WW-fusion contribution
- all important background processes are taken into account
- measurement accuracy $\Delta \sigma$ (WW)/ σ (WW) between 7.2% 24.32%
- measurement accuracy $\Delta \Gamma_{H}^{tot} / \Gamma_{H}^{tot}$ between 9.0% 24.44%
- much better results for $\Delta\Gamma_{\rm H}^{\rm tot}/\Gamma_{\rm H}^{\rm tot}$ at high \sqrt{s} (4.9% 6.3%)

Introduction	Theoretical Background	Determination of Γ_{H}^{tot}	Measurement Accuracies of Γ_{H}^{tot}	Summary	Backup Slides
	00000	0000000	000000000000000000000000000000000000000		

BACKUP SLIDES

Tables (000000			
Introduction	Theoretical Background	Determination of Ftot	Measurement Accuracies of FH	Summary	Backup Slides

	$m_{\rm H} = 1$	$120 \mathrm{GeV}$	$m_{\rm H} = 1$	$26 \mathrm{GeV}$	$m_{\rm H} = 1$	$30 \mathrm{GeV}$	$m_{\rm H} = 1$	$40 { m GeV}$
	Nww	N _{ZH}	Nww	N _{ZH}	Nww	N _{ZH}	Nww	N _{ZH}
no cut	4 525	16 019	3 426	14 002	3 343	13 653	2 398	9 345
N _{ctrk}	3 581	11 975	2 663	10 918	2 587	10 437	1 776	7 128
no isolated leptons	3 581	11 892	2 663	10 918	2 587	10 437	1 776	7 128
m _{vis}	2 899	8 058	2 07	8 356	1 892	7 494	1 124	4 416
E _{vis}	2 887	8 041	2 023	8 356	1 877	7 485	1 093	4 170
$\sum p_{\mathrm{T}}$	2 596	7 391	1 577	7 448	1 535	6 909	897	3 669
Y ₂₃	1 824	5 408	1 053	4 860	928	4 212	426	1 740
Y ₁₂	1 778	5 260	965	4 594	848	3 894	377	1 431
btag	974	2 932	547	2 574	440	2 139	208	789
$ \sum p_z $	920	2 837	519	2 546	405	2 130	195	786
$ \cos(heta_{ m jet}) $	898	2 767	507	2 546	401	2 079	190	759
number of events	898	2 767	507	2 546	401	2 079	190	759

Table: Cutflow and the number of WW-fusion and Higgs-strahlung events for the four different Higgs masses after every single cut.

- I		ы I.С.	100 0 17	
Introduction	Theoretical Background	Determination of Γ_{H}^{tot}	Measurement Accuracies of Γ_{H}^{tot}	Summary Backup Slides

Example: Cutflow Background for $m_{\rm H} = 126 \text{ GeV}$

	N ^{tot} bgrd	$\nu_l \bar{\nu}_l b \bar{b}$	$\nu_l \bar{\nu}_l q \bar{q}$	qql+l-	qqlv	ppp	qq
no cut	$32.104\cdot10^6$	30 562	119 296	299 741	1 730 574	3 908 020	$26.016\cdot 10^6$
$10 < N_{\rm ctrk} < 40$	$27.474 \cdot 10^{6}$	28 883	110 291	229 073	1 682 652	1 603 046	$23.821\cdot 10^6$
no isolated leptons	$19.846\cdot10^6$	23 012	88 998	153 540	1 156 157	1 150 993	$17.274\cdot10^{6}$
$106 \; {\rm GeV} < m_{\rm vis} < 136 \; {\rm GeV}$	1 047 860	1 040	5 548	6 196	181 973	782	852 321
$105 \; \mathrm{GeV} < \textit{E}_{vis} < 160 \; \mathrm{GeV}$	985 320	1 040	5 545	5 922	177 193	728	794 892
$20~{ m GeV} < \sum p_{\sf T} < 80~{ m GeV}$	142 909	878	4 714	1 760	134 047	3	1 507
$Y_{23} < 0.02$	27 271	421	2 408	588	22 654	1	1 199
$0.2 < Y_{12} < 0.8$	24 385	390	2 271	508	20 533	0	683
btag > 0.85	1 404	224	15	65	111	0	289
$ \sum p_z < 60 \text{ GeV}$	465	193	9	38	73	0	152
$ \cos(heta_{ m jet}) < 0.95$	449	187	9	36	65	0	152
number of events	449	187	9	36	65	0	152

Table: Cutflow and number of events for every background process for $m_{\rm H} = 126~{\rm GeV}$. The total number of background events after every cut is listed.