Renormalization of the Higgs sector in the triplet model

Kei Yagyu (National Central Univ.)

Collaborators:

Mayumi Aoki, Shinya Kanemura, Mariko Kikuchi

LCWS2012, Texas University at Arlington, Oct. 23rd

The Higgs Triplet Model

The Higgs triplet field Δ is added to the SM.

	SU(2)I	U(1)Y	U(1)L
Ф	2	1/2	0
Δ	3	1	-2

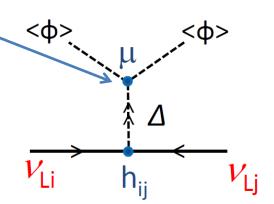
Cheng, Li (1980); Schechter, Valle, (1980); Magg, Wetterich, (1980); Mohapatra, Senjanovic, (1981).

• Neutrino Yukawa interaction:

$$\mathcal{L}_{\scriptscriptstyle m{Y}} = h_{ij} \overline{L_L^{ci}} \cdot \Delta L_L^j$$

• Higgs Potential:

$$V = m^{2} \Phi^{\dagger} \Phi + M^{2} \text{Tr}(\Delta^{\dagger} \Delta) + (\mu \Phi^{T} i \tau_{2} \Delta^{\dagger} \Phi + \text{h.c.})$$
$$+ \lambda_{1} (\Phi^{\dagger} \Phi)^{2} + \lambda_{2} [\text{Tr}(\Delta^{\dagger} \Delta)]^{2} + \lambda_{3} \text{Tr}[(\Delta^{\dagger} \Delta)^{2}]$$
$$+ \lambda_{4} (\Phi^{\dagger} \Phi) \text{Tr}(\Delta^{\dagger} \Delta) + \lambda_{5} \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$$



Neutrino mass matrix

$$(m_
u)_{ij} = h_{ij} rac{\mu \langle \phi^0
angle^2}{M_\Delta^2} = h_{ij} v_\Delta$$

 M_{Δ} : Mass of triplet scalar boson. v_{Λ} : VEV of the triplet Higgs

The Higgs Triplet Model

The Higgs triplet field Δ is added to the SM.

	SU(2)I	U(1)Y	U(1)L
Φ	2	1/2	0
Δ	3	1	-2

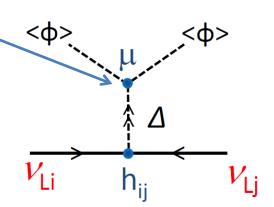
Cheng, Li (1980); Schechter, Valle, (1980); Magg, Wetterich, (1980); Mohapatra, Senjanovic, (1981).

• Neutrino Yukawa interaction:

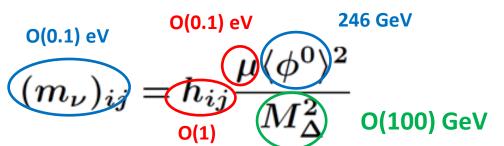
$$\mathcal{L}_{ extsf{Y}} = h_{ij} \overline{L_L^{ci}} \cdot \Delta L_L^j$$

• Higgs Potential:

$$V = m^{2} \Phi^{\dagger} \Phi + M^{2} \text{Tr}(\Delta^{\dagger} \Delta) + (\mu \Phi^{T} i \tau_{2} \Delta^{\dagger} \Phi + \text{h.c.})$$
$$+ \lambda_{1} (\Phi^{\dagger} \Phi)^{2} + \lambda_{2} [\text{Tr}(\Delta^{\dagger} \Delta)]^{2} + \lambda_{3} \text{Tr}[(\Delta^{\dagger} \Delta)^{2}]$$
$$+ \lambda_{4} (\Phi^{\dagger} \Phi) \text{Tr}(\Delta^{\dagger} \Delta) + \lambda_{5} \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$$



Neutrino mass matrix



The HTM can be tested at colliders!!

Important predictions

* Rho parameter deviates from unity.

$$ho_{ ext{tree}} = rac{1+rac{2v_{\Delta}^2}{v_{\Phi}^2}}{1+rac{4v_{\Delta}^2}{v_{\Phi}^2}} \simeq 1-rac{2v_{\Delta}^2}{v_{\Phi}^2}$$

★ Extra Higgs bosons

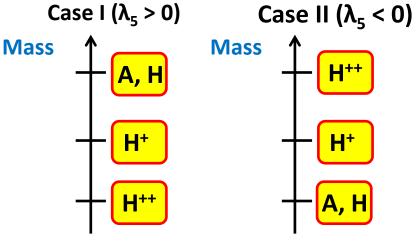
Doubly-charged H[±], Singly-charged H[±], CP-odd A and CP-even Higgs boson H

★ Characteristic mass relation is predicted.

$$m_{H++}^2 - m_{H+}^2 \simeq m_{H+}^2 - m_A^2$$

Under $v_{\Delta} \ll v_{\oplus}$ (From experimental data $\rho_{exp} \sim 1$)

$$m_h^2 \simeq 2\lambda_1 v^2$$
 $M_\Delta^2 \equiv rac{v_{_\Phi}^2 \mu}{\sqrt{2} v_\Delta} egin{array}{c} m_{H^{++}}^2 \simeq M_\Delta^2 - rac{v^2}{2} \lambda_5 \ m_{H^+}^2 \simeq M_\Delta^2 - rac{v^2}{4} \lambda_5 \ m_A^2 \simeq m_H^2 = M_\Delta^2 \ \end{array}$



Theoretical bounds

Vacuum stability bound (Bounded from below) Arhrib, et al., PRD84, (2011)

$$\lim_{r\to\infty} V(rv_1, rv_2, ..., rv_n) > 0$$

$$\lambda_2 = \lambda_3 = \lambda_\Delta$$

$$egin{aligned} V &= \lambda_1 (\Phi^\dagger \Phi)^2 + \lambda_2 [\mathrm{Tr}(\Delta^\dagger \Delta)]^2 + \lambda_3 \mathrm{Tr}[(\Delta^\dagger \Delta)^2] \ + \lambda_4 (\Phi^\dagger \Phi) \mathrm{Tr}(\Delta^\dagger \Delta) + \lambda_5 \Phi^\dagger \Delta \Delta^\dagger \Phi \end{aligned}$$

$$\lambda_1 > 0, \ \lambda_{\Delta} > 0,$$

$$2\sqrt{2\lambda_1\lambda_\Delta} + \lambda_4 + \text{MIN}[0, \ \lambda_5] > 0$$

Lee, Quigg, Thacker, PRD16, (1977)

Aoki, Kanemura, PRD77, (2008); Arhrib, et al., PRD84, (2011)

Perturbative unitarity bound

 ϕ_{i} : Longitudinal modes of weak gauge bosons and physical Higgs bosons

$$|\langle \varphi_3 \varphi_4 | a^0 | \varphi_1 \varphi_2 \rangle| < \frac{1}{2} \text{ or } 1$$

$$\begin{cases} x_1 = 3\lambda_1 + 7\lambda_\Delta + \sqrt{(3\lambda_1 - 7\lambda_\Delta)^2 + \frac{3}{2}(2\lambda_4 + \lambda_5)^2}, \\ x_2 = \frac{1}{2}(2\lambda_4 + 3\lambda_5), \\ x_3 = \frac{1}{2}(2\lambda_4 - \lambda_5) & |\mathbf{x}_{\mathsf{i}}| < 8\pi \text{ or } 16\pi \end{cases}$$

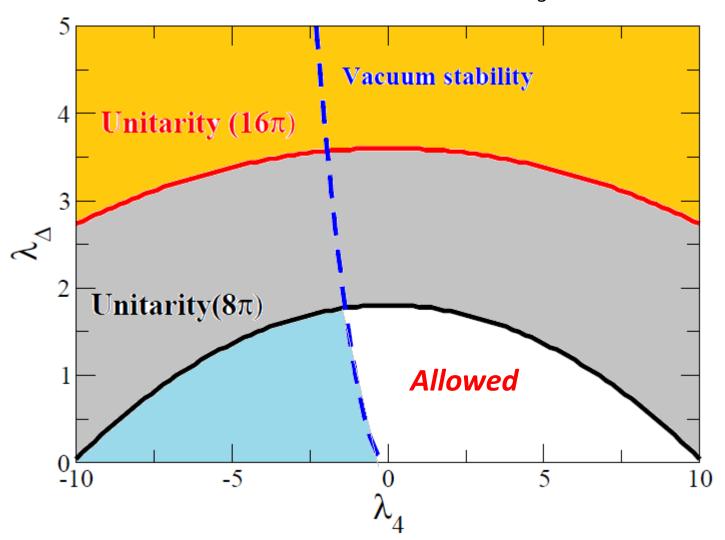
$$x_2 = \frac{1}{2}(2\lambda_4 + 3\lambda_5),$$

$$x_3 = \frac{1}{2}(2\lambda_4 - \lambda_5)$$

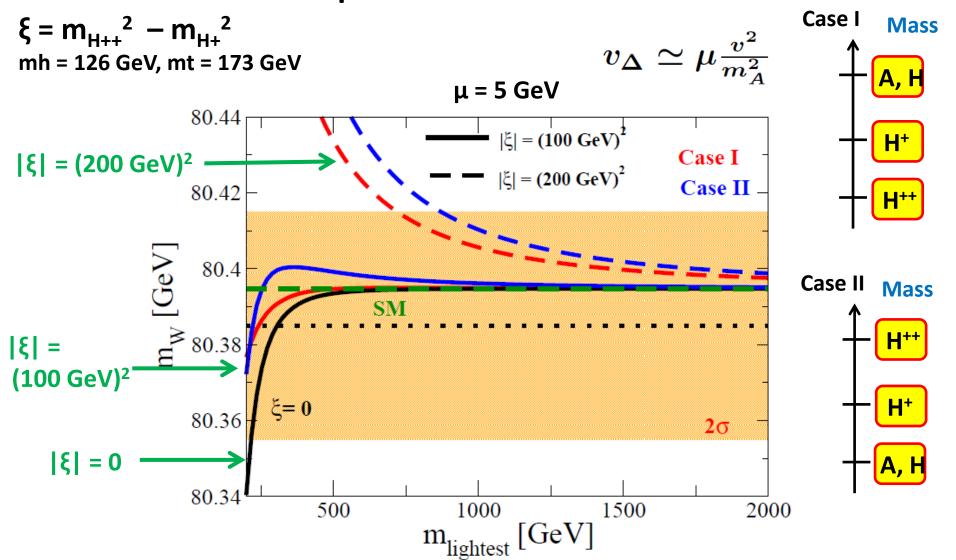
$$|x_i| < 8\pi \text{ or } 16\pi$$

Theoretical bounds

Case for $\lambda_5 = 0$ ($\Delta m = 0$)

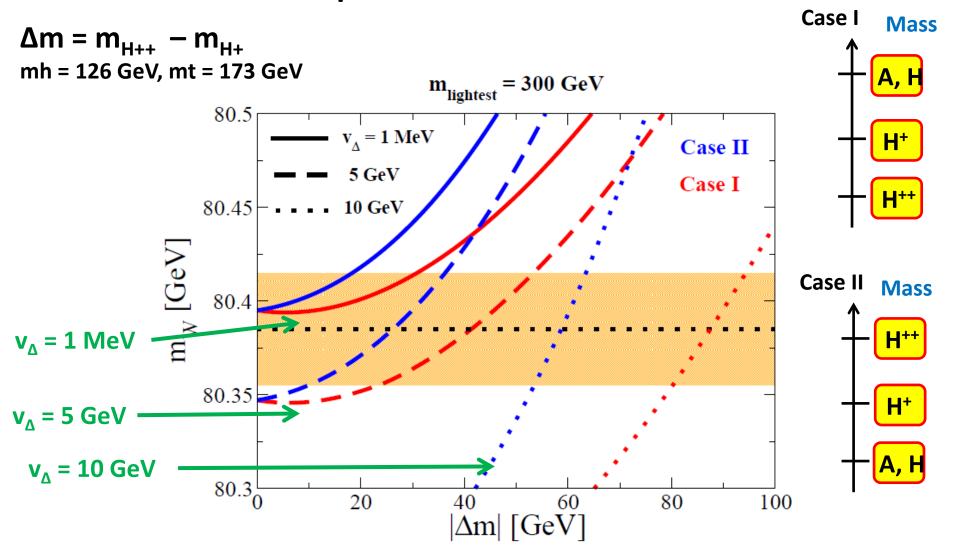


1-loop corrected W mass



In the large mass limit, the HTM can be decoupled to the SM.

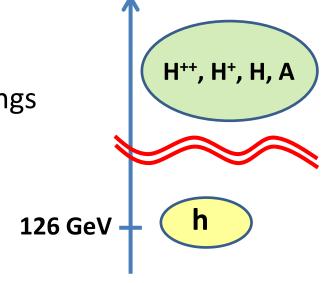
1-loop corrected W mass



For large triplet VEV case, large mass difference is favored.

Testing the Higgs Triplet Model at colliders

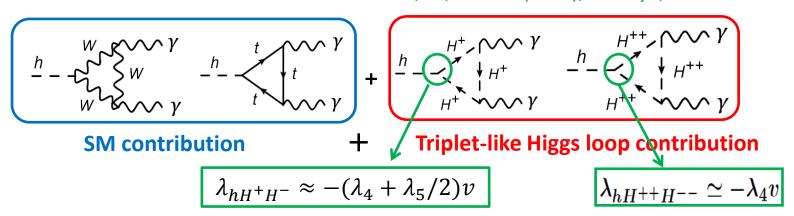
- Indirect way (Decoupling case)
 - -Precise measurement for the Higgs couplings Ex. hγγ, hhh, hWW, hZZ, ...



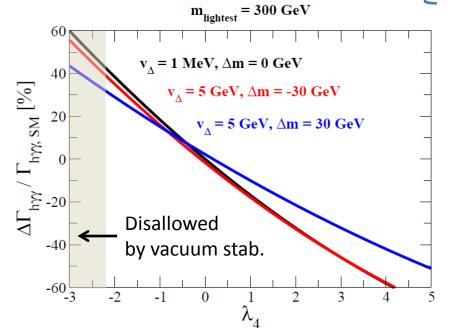
- Direct way
 - -Discovery of extra Higgs bosons
 - Ex. Doubly-charged Higgs boson, Singly-charged Higgs boson, ...
 - Testing the mass spectrum among the triplet like Higgs bosons.

Higgs $\rightarrow \gamma \gamma$

Arhrib, et al. JHEP04 (2012); Kanemura, KY, PRD85 (2012); Akeroyd, Moretti PRD86 (2012)



Sign of λ_4 is quite important!



If $\lambda_4 < 0 \rightarrow$ Constructive contribution

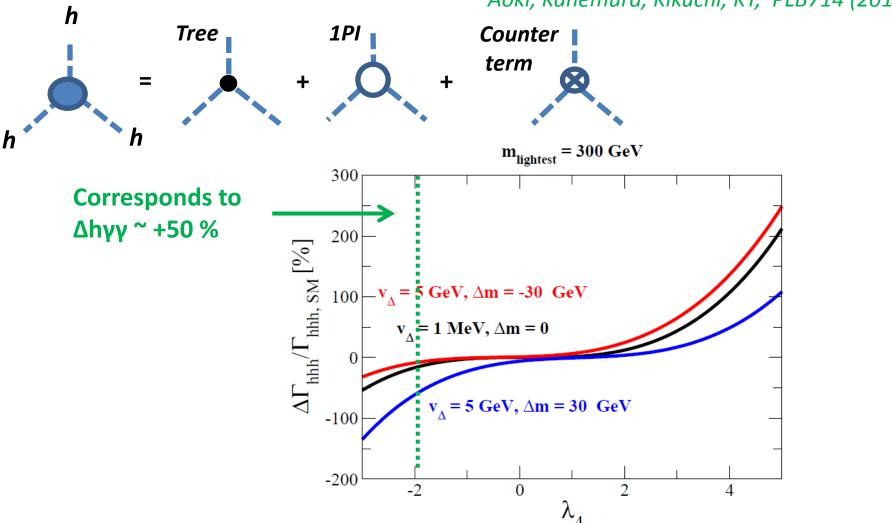
If $\lambda_4 > 0 \rightarrow$ Destructive contribution

Signal strength ($\sigma_{\rm obs}/\sigma_{\rm SM}$) is 1.56 \pm 0.43 (CMS) and 1.9 \pm 0.5 (ATLAS).

When triplet Higgs mass \sim 300 GeV, hyy can be enhanced by \sim +40 % \sim +50% .

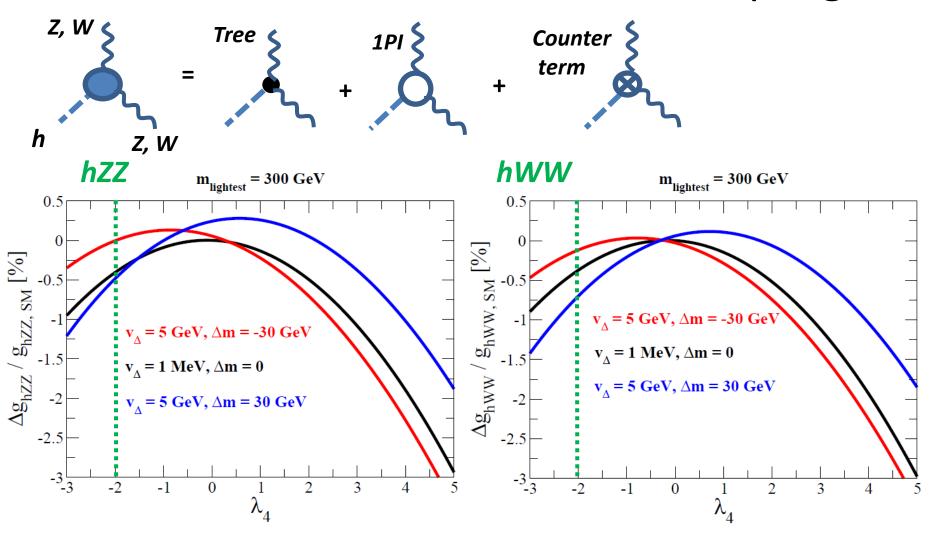
Renormalized hhh coupling

Aoki, Kanemura, Kikuchi, KY, PLB714 (2012)



When hyy (HTM) > hyy (SM) [λ_4 <0], hhh (HTM) < hhh (SM). In the case of λ_4 ~ -2, deviation of the hhh coupling is -10 ~ -60 %.

Renormalized hZZ and hWW coupling

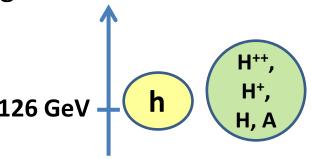


In the case of $\lambda_4 \sim -2$, deviation of the hZZ (hWW) coupling is 0 \sim -0.5% (-0.1 \sim -0.7)%.

Testing the Higgs Triplet Model at colliders

- Indirect way (Decoupling case)
 - -Precise measurement for the Higgs couplings

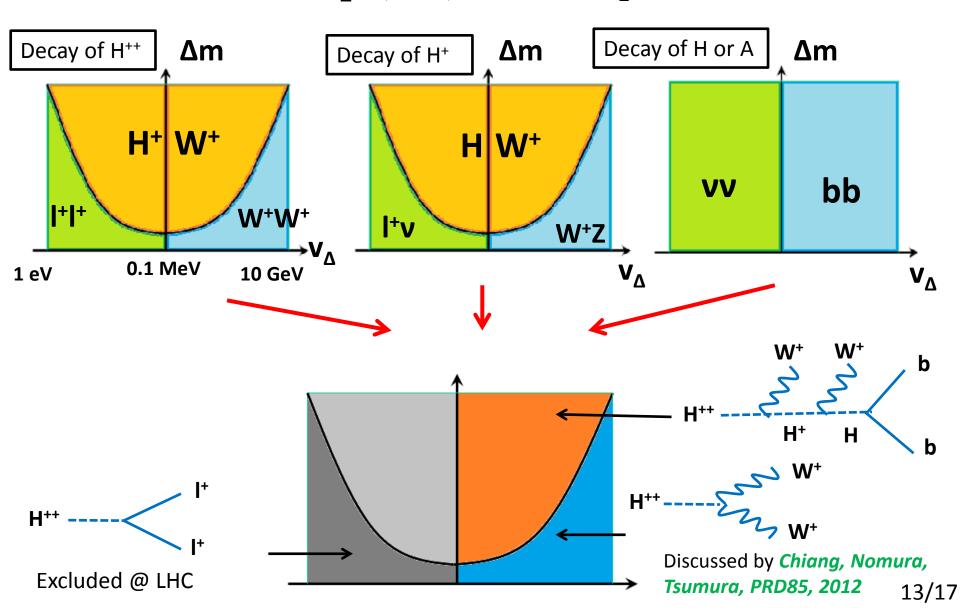
Ex. hyy, hWW, hZZ, hhh, ...



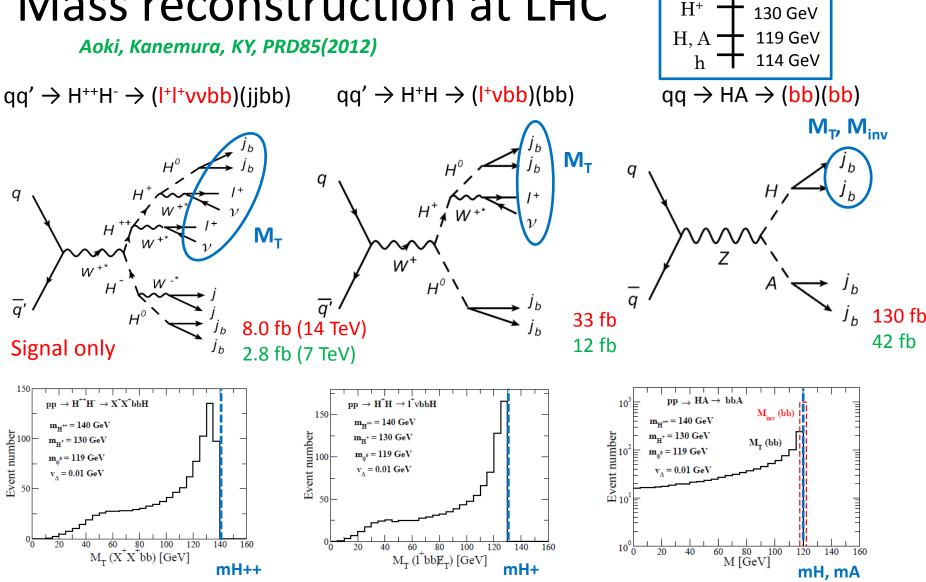
Direct way

- -Discovery of extra Higgs bosons
 - Ex. Doubly-charged Higgs boson, Singly-charged Higgs boson, ...
- Testing the mass spectrum among the triplet like Higgs bosons.

Decay property of the triplet-like Higgs bosons [O(100) GeV case]



Mass reconstruction at LHC

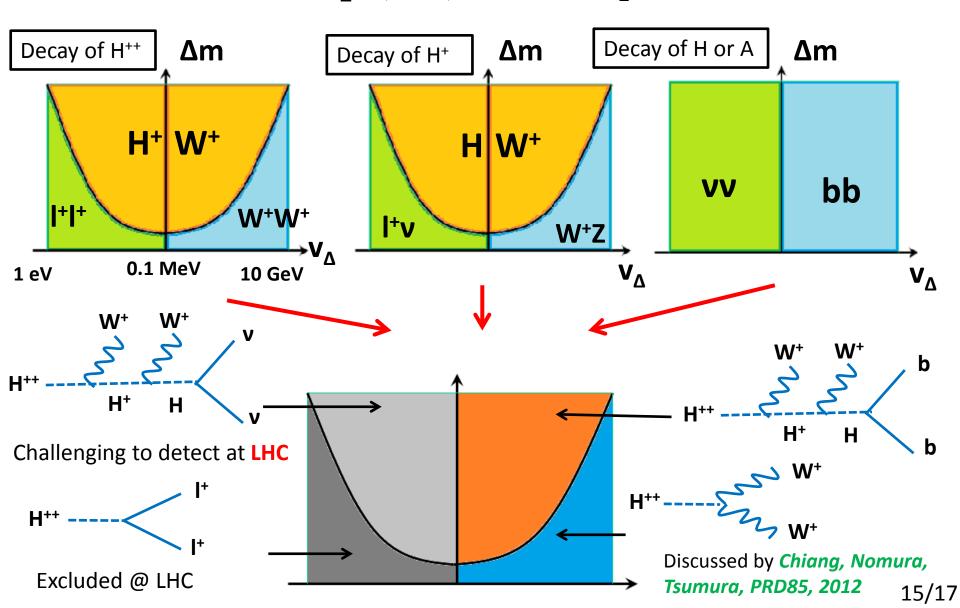


 H^{++}

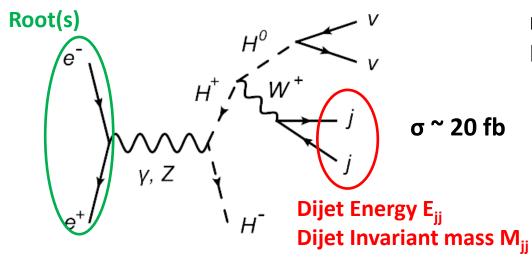
140 GeV

All the masses of the Δ -like scalar bosons may be reconstructed.

Decay property of the triplet-like Higgs bosons [O(100) GeV case]

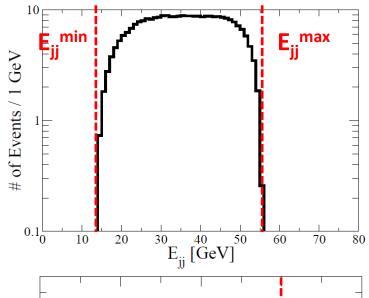


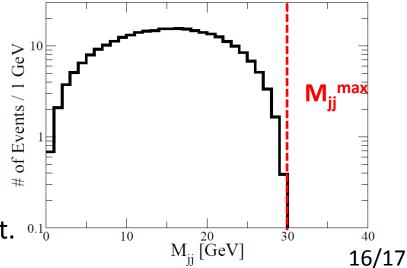
Mass reconstruction at ILC



$$egin{aligned} m_{H^+}^2 &\simeq rac{s}{4} \left[1 - \left(rac{E_{jj}^{ ext{max}} - E_{jj}^{ ext{min}}}{E_{jj}^{ ext{max}} + E_{jj}^{ ext{min}}}
ight)^2
ight] \ m_{H^0}^2 &\simeq rac{s}{4} \left[1 - \left(rac{E_{jj}^{ ext{max}} - E_{jj}^{ ext{min}}}{E_{jj}^{ ext{max}} + E_{jj}^{ ext{min}}}
ight)^2
ight] - rac{2\sqrt{s} E_{jj}^{ ext{max}} E_{jj}^{ ext{min}}}{E_{jj}^{ ext{max}} + E_{jj}^{ ext{min}}} \ M_{jj}^{ ext{max}} &\simeq m_{H^+} - m_H \end{aligned}$$

mH+ = 200 GeV, mH = 170 GeV, Root(s) = 500 GeV, 100 fb⁻¹





H⁺⁺ can be measured by looking at the excess of the SS dilepton + jets + missing event. ^{0.1}

Summary

▶The Higgs Triplet Model (HTM):

Tiny neutrino masses can be explained.

Indirect way to test the HTM at colliders (Decoupling case):

Measuring the deviation of the Higgs coupling from the SM prediction.

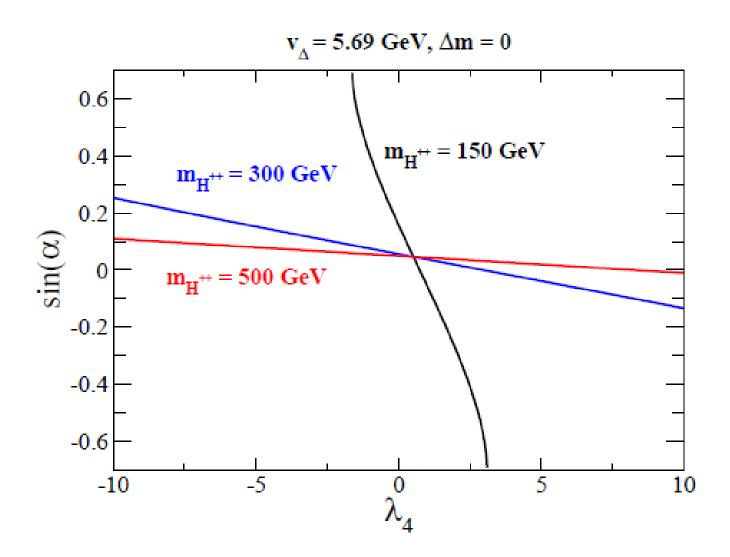
Ex) Triplet Higgs mass = 300 GeV case

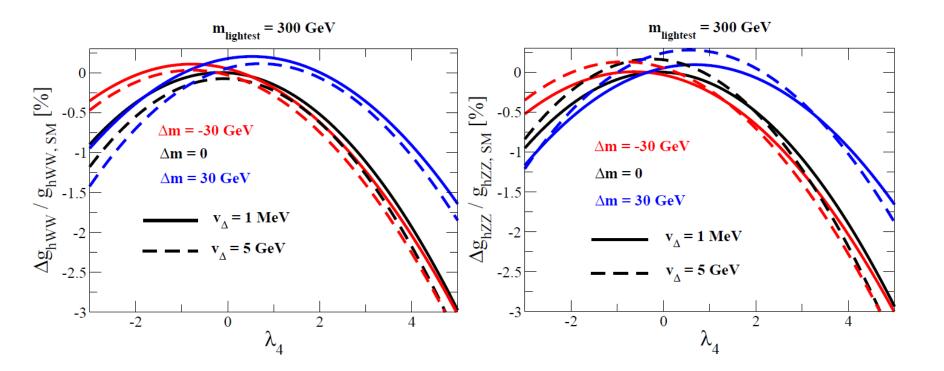
- $h\gamma\gamma \rightarrow +50\%$ Current LHC data can be reproduced.
- hhh \rightarrow -60 % ~ +100 % Direction of the correction is opposite to hyy.
- hZZ, hWW \rightarrow ~-1 % O(1%) deviation of hVV can be measured at the ILC.

Direct way to test the HTM at colliders (Light triplet Higgs case):

At the LHC, mH > mH++ with small $v\Delta$ case is challenging to test the model. At the ILC, even if this scenario is realized, triplet-like Higgs bosons may be detectable by using the dijet energy and invariant mass distribution.

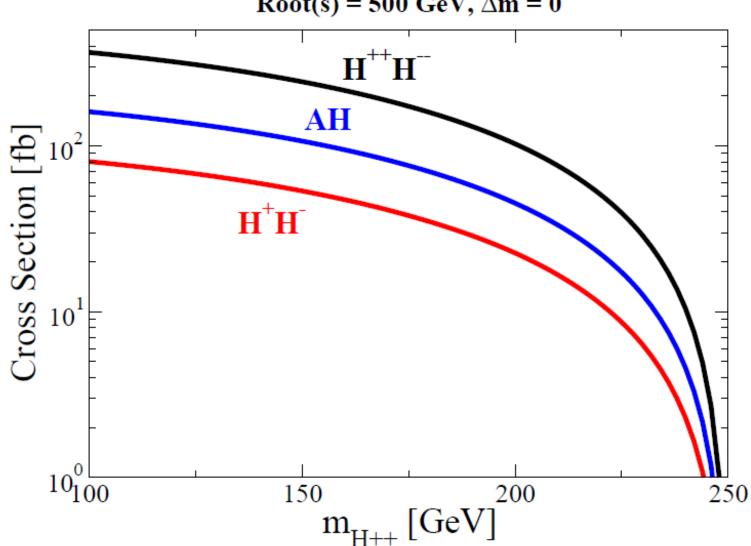
ILC is necessary to test the HTM in both indirect way and direct way!!





Cross section

Root(s) = 500 GeV, Δ m = 0



Renormalization of the Higgs potential

Aoki, Kanemura, Kikuchi, KY, PLB714

8 parameters in the potential

$$\mu$$
, m , M , λ_1 , λ_2 , λ_3 , λ_4 , λ_5

8 physical parameters

$$v$$
, m_{H++} , m_{H+} , m_A , m_h , m_H , α , θ' ($v\Delta$)

Counter terms

$$\delta v$$
, $\delta m_{H^{++}}^2$, $\delta m_{H^{+}}^2$, δm_A^2 , δm_h^2 , δm_H^2 , $\delta \alpha$, $\delta \theta'$

Tadpole: δT_{ω} , δT_{Δ} .

Wave function renormalization: δZ_{H++} , δZ_{H+} , δZ_{A} , δZ_{H} , δZ_{h}

Reno. of EW parameters

Vanishing 1-point function
$$\bigcirc --- = \otimes ---- + \bigcirc --- = 0 \longrightarrow \delta T_{\varphi}, \delta T_{\Delta}$$

$$\begin{vmatrix} \Phi \\ P^2 = \Phi^2 \end{vmatrix} = C$$

$$\frac{d}{dp^2} \stackrel{\varphi}{-} \stackrel$$

$$\frac{d}{dv^2} \stackrel{\Phi}{\longrightarrow} \stackrel{\Phi}{\longrightarrow} = 0 \qquad \delta Z_{H++}, \delta Z_{H+}, \delta Z_{A}, \delta Z_{H}, \delta Z_{h}$$

No-mixing condition

where 2-point function is defined by

Constraints from EW precision data

There are 3 parameters: g, g' and v in the kinetic term of Higgs fields.

The electroweak observables are described by the 3 input parameters.

We can choose α_{em} , m_W and m_Z as the 3 input parameters.

The weak angle $\sin^2\theta_W = s_W^2$ can be described in terms of the gauge boson masses.

$$s_W^2 = 1 - \frac{m_W^2}{m_Z^2}$$

The counter term of δs_w^2 is derived as

$$\sim \delta \rho = \rho - 1 = \alpha_{em} T$$

$$\frac{\delta s_W^2}{s_W^2} = \frac{s_W^2}{c_W^2} \left[\frac{\delta m_Z^2}{m_Z^2} - \frac{\delta m_W^2}{m_W^2} \right] = \frac{s_W^2}{c_W^2} \left[\frac{\Pi^{ZZ}(m_Z^2)}{m_Z^2} - \frac{\Pi^{WW}(m_W^2)}{m_W^2} \right]$$

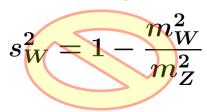
The quantity $\delta \rho$ (or T) measures the violation of the custodial symmetry.

Constraints from EW precision data

There are 4 parameters (instead of 3 in the SM): g, g', v and v_{Δ} in the kinetic term of Higgs fields.

The electroweak observables are described by the 4 input parameters.

The weak angle $\sin^2\theta_W = s_W^2$ cannot be given in terms of the gauge boson masses.



Scheme 1 Blank, Hollik (1997)

Input parameters:

$$m_W$$
, m_Z , α_{em} , s_W^2

Scheme 2

Input parameters: Chen, Dawson, Jackson

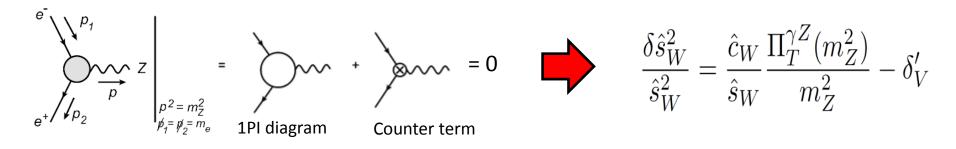
$$m_{W}$$
, m_{Z} , α_{em} , v_{Δ}

Chankowski, Pokorski, Wagner (2007); Chen, Dawson, Jackson (2008)

$$1-4\hat{s}_W^2(m_Z)=rac{\mathrm{Re}(v_e)}{\mathrm{Re}(a_e)}$$

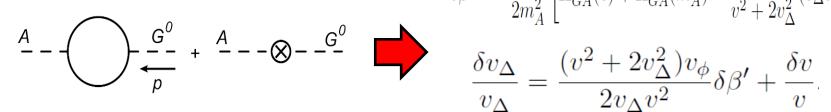
Additional renormalization condition

Scheme 1



$$\delta \rho \simeq \frac{1}{16\pi^2} \ln \frac{m_t}{m_b} + \cdots$$

Scheme 2



$$\delta \beta' = -\frac{1}{2m_A^2} \left[\Pi_{GA}^{1PI}(0) + \Pi_{GA}^{1PI}(m_A^2) - \frac{4}{v^2 + 2v_\Delta^2} (v_\Delta \delta T_\Phi - v_\phi \delta T_\Delta) \right]$$

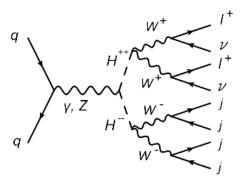
$$\frac{\delta v_{\Delta}}{v_{\Delta}} = \frac{(v^2 + 2v_{\Delta}^2)v_{\phi}}{2v_{\Delta}v^2}\delta\beta' + \frac{\delta v}{v}.$$

$$\delta\rho \simeq \frac{1}{16\pi^2} \frac{(m_t - m_b)^2}{m_W^2} + \cdots$$

Diboson decay scenario

Realizing $v_{\Lambda} > 0.1$ MeV with Case I

Signal: Same-sign dilepton + Jets + Missing

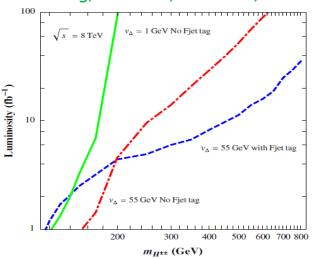


When mH++ = 100 GeV, root(s) = 7 TeV the signal cross section is \sim 3 fb.

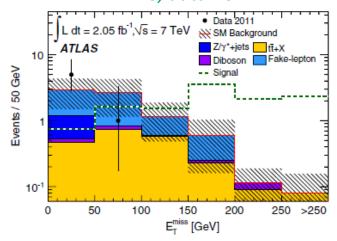
- Chiang, Nomura and Tsumura studied discovery potential for this scenario at the LHC.
- Data: L~2 fb⁻¹, root(s) = 7 TeV at ATLAS
 6 events have been discovered, which is consistent with the SM prediction.

Can we set a lower bound for the mass of H⁺⁺ in the case of H⁺⁺ decays into diboson?

Chiang, Nomura, Tsumura, 2012

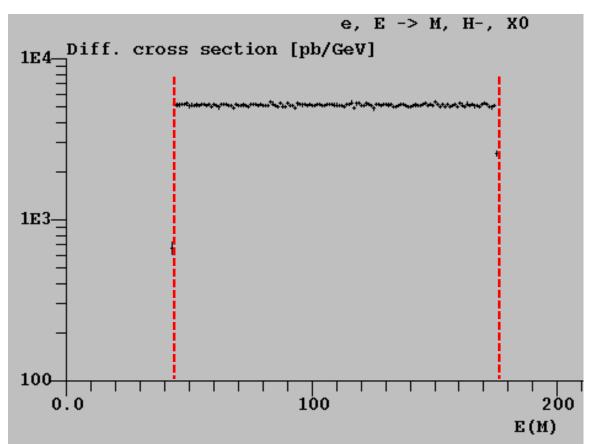


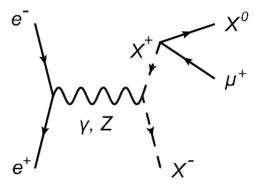
ATLAS, data 2011



Mass reconstruction at ILC

Ex. mX + = 200 GeV, mX0 = 70 GeV



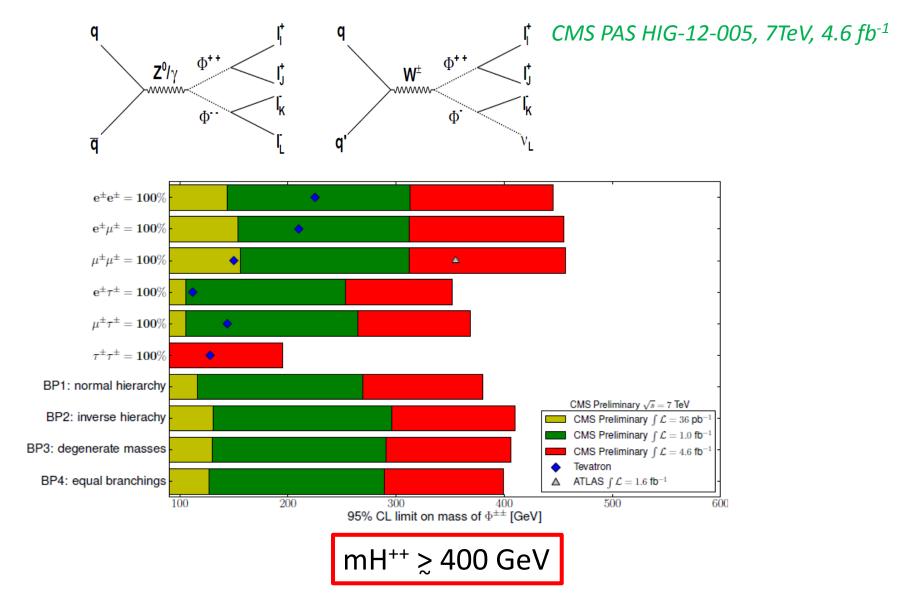


$$m_{X^0}^2 = rac{s}{4} \left[1 - \left(rac{E_{\mu}^{
m max} - E_{\mu}^{
m min}}{E_{\mu}^{
m max} + E_{\mu}^{
m min}}
ight)^2
ight] - rac{2\sqrt{s}E_{\mu}^{
m max}E_{\mu}^{
m min}}{E_{\mu}^{
m max} + E_{\mu}^{
m min}}$$

$$m_{X^+}^2 = rac{s}{4} \left[1 - \left(rac{E_{\mu}^{ ext{max}} - E_{\mu}^{ ext{min}}}{E_{\mu}^{ ext{max}} + E_{\mu}^{ ext{min}}}
ight)^2
ight]$$

Experimental bounds (Direct)

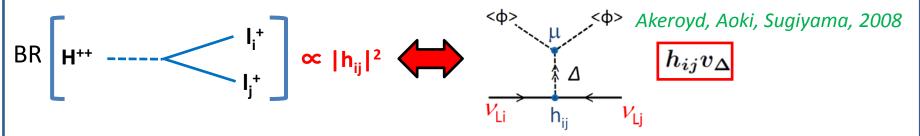
Assuming 100% same-sign leptonic decay of the doubly-charged Higgs boson



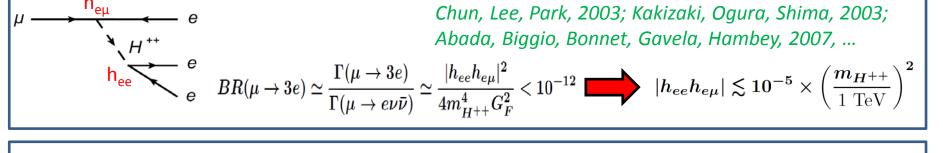
Dilepton decay scenario

Realizing $v_{\Lambda} < 0.1$ MeV with Case I.

▶ By measuring the pattern of leptonic decay, we can direct test the neutrino mass matrix.



► Lepton flavor violation ($\mu \rightarrow 3e$, μ -e conversion, etc)



- LHC phenomenology
 - -4 lepton, 3 lepton signature Perez, Han, Huang, Li, 2008; Akeroyd, Chiang, Gaur, 2010, ...
 - -Using tau polarization Sugiyama, Tsumura, Yokoya, arXiv:1207.0179

Discrimination of chiral structure of the Yukawa coupling

-Same sign tetra-lepton signature *Chun, Sharma, arXiv:1206.6278*

Experimental bounds (Indirect)

Gauge boson self-energies

6 nondec. d.o.f.

$$= M_{\text{New}}^2 + p^2 \ln \frac{M_{\text{New}}^2}{p^2} + \cdots$$

$$p^2 \ln \frac{M_{
m New}^2}{p^2} + \cdots$$

$$p^2 \ln \frac{M_{
m New}^2}{n^2} + \cdots$$

Model w/ $\rho_{tree} = 1$

- 3 input parameters
- \rightarrow 6-3 (Ren. conditions) = 3 nondec. d.o.f.

$$\delta\rho \simeq \frac{1}{16\pi^2} \frac{(m_t - m_b)^2}{m_W^2} + \cdots$$

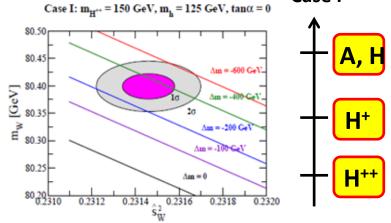
Model w/o $\rho_{tree} = 1$

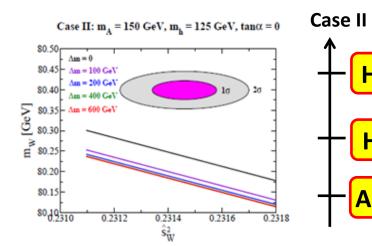
- 4 input parameters Blank, Hollik, NPB514, (1998)
- \rightarrow 6-4 (Ren. conditions) = 2 nondec. d.o.f.

$$\delta\rho \simeq \frac{1}{16\pi^2} \ln \frac{m_t}{m_b} + \cdots$$

1-loop corrected W mass

Kanemura, KY, PRD85 (2012)Case I





Radiative corrections to the mass spectrum

Aoki, Kanemura, Kikuchi, KY, arXiv: 1204.1951

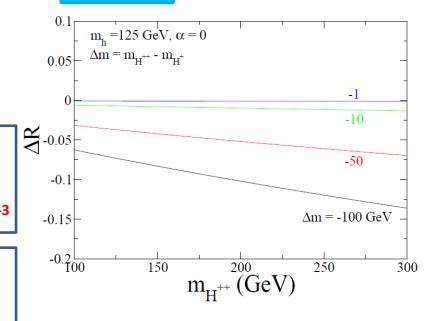
Ratio of the squared mass difference R

$$R \equiv \frac{m_{H^{++}}^2 - m_{H^+}^2}{m_{H^+}^2 - m_A^2}$$

Tree level:
$$R^{\mathrm{tree}} = 1 + \left(\frac{v_{\Delta}^2}{v^2}\right) \simeq 1$$

$$\begin{array}{cc} \text{Loop level:} & R^{\text{loop}} = 1 + \underline{\Delta R} + \left(\frac{v_{\Delta}^2}{v^2}\right) \\ & \text{Loop correction} \end{array}$$

Case I



$$\Delta R = \frac{\Pi_{H^{++}H^{--}}^{\mathrm{1PI}}[m_{H^{++}}^2] - 2\Pi_{H^{+}H^{-}}^{\mathrm{1PI}}[m_{H^{+}}^2] + \Pi_{AA}^{\mathrm{1PI}}[(m_A^2)_{\mathrm{tree}}]}{m_{H^{++}}^2 - m_{H^{+}}^2}$$

(m_A²)_{tree}is determined by m_{H++}² and m_{H+}²: $(m_A^2)_{\rm tree}=2m_{H^+}^2-m_{H^{++}}^2$

In favored parameter sets by EW precision data: $m_{H++} = O(100)GeV$, $|\Delta m| \sim 100GeV$, ΔR can be as large as O(10)%.

Custodial Symmetry

The SM Lagrangian can be written by the 2×2 matrix form of the Higgs doublet:

$$\Sigma = (\tilde{\Phi}, \Phi) = \begin{pmatrix} \phi^{0*} & \phi^{+} \\ -\phi^{-} & \phi^{0} \end{pmatrix}$$

★ Kinetic term

$$\mathcal{L}_{kin} = \frac{1}{2} \text{Tr} \Big[(\tilde{D}_{\mu} \Sigma)^{\dagger} (\tilde{D}^{\mu} \Sigma) \Big]$$

$$\tilde{D}_{\mu}\Sigma = \partial_{\mu}\Sigma + i\frac{g}{2}\tau \cdot W_{\mu}\Sigma - i\frac{g'}{2}B_{\mu}\Sigma\tau_{3}$$

★ Higgs potential

$$V = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$
$$= -\frac{\mu^2}{2} \text{Tr}(\Sigma^{\dagger} \Sigma) + \frac{\lambda}{4} \text{Tr}(\Sigma^{\dagger} \Sigma)^2$$

★ Yukawa interaction (top-bottom sector)

$$\mathcal{L}_Y = y_t \bar{Q}_L \Phi t_R + y_b \bar{Q}_L \Phi b_R + \text{h.c.}$$

$$= y_V \bar{Q}_L \Sigma Q_R + y_A \bar{Q}_L \Sigma \tau_3 Q_R + \text{h.c.}$$

When we take g' and $y_A \rightarrow 0$, Lagrangian is invariant under $SU(2)_L \times SU(2)_R$

$$\Sigma
ightarrow U_L \Sigma U_R^\dagger$$
 , $Q_{L,R}
ightarrow U_{L,R} Q_{L,R}$

After the Higgs field gets the VEV:

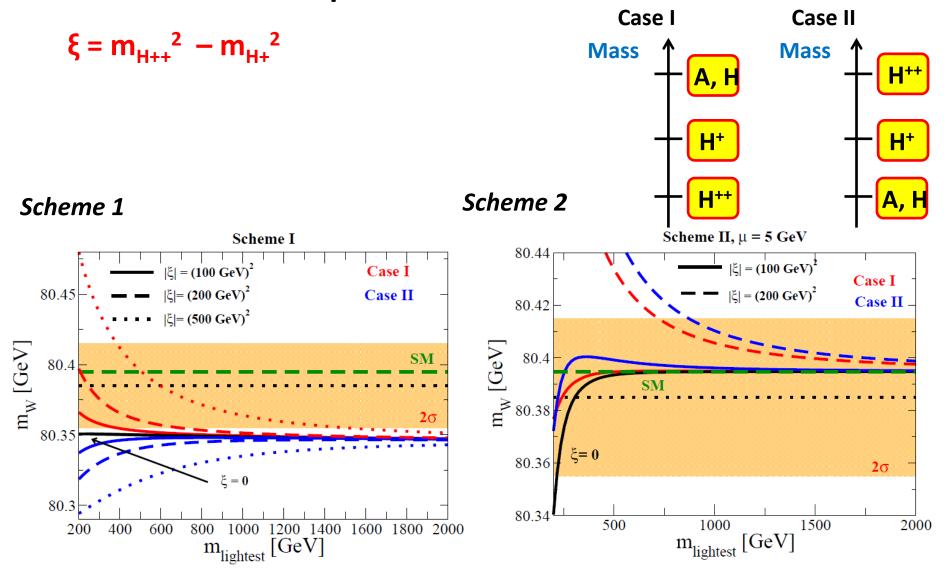
$$\Sigma \to \langle \Sigma \rangle = \frac{v}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \langle \Delta \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ v_{\Delta} & 0 \end{pmatrix}$$

this symmetry is reduced to $SU(2)_L = SU(2)_R = SU(2)_V$ (custodial symmetry).

 $SU(2)_V$ breaking by g' is included in the definition of the rho parameter, while that by y_A is not.

There is a significant contribution to the deviation of rho = 1 from the top-bottom sector by the loop effect.

1-loop corrected W mass



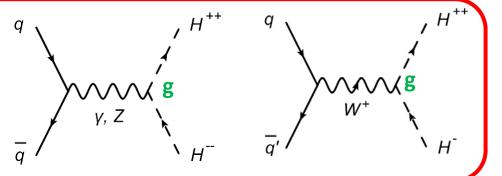
In Scheme II, decoupling limit can be taken in the heavy mass limit.

Production mechanisms at LHC

Main production process

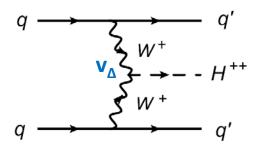
Drell-Yan

depends on the gauge coupling



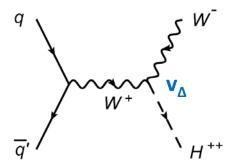
Vector Boson Fusion

- depends on $v_{\Delta} \rightarrow Suppressed$



W associate

- depends on $v_{\Delta} \rightarrow Suppressed$

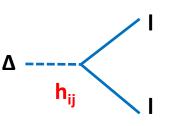




Decay

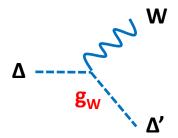
The decay of Δ -like Higgs bosons can be classified into 3 modes.

1. Decay via h_{ii}



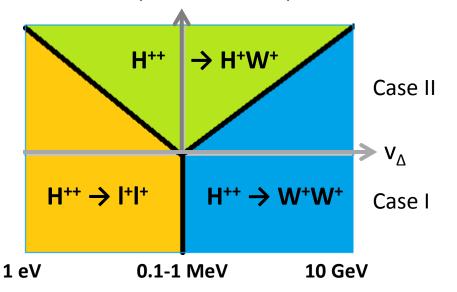
- 2. Decay via V

3. Decay via g



Decay of H⁺⁺

$$\Delta m (= mH^{++} - mH^{+})$$



Decay modes of 1 and 2 are related to each other by the relation:

$$(m_
u)_{ij} = h_{ij} v_\Delta$$

Decay of the triplet like scalar bosons strongly depend on v_{Δ} and Δm ($\equiv m_{H++} - m_{H+}$).