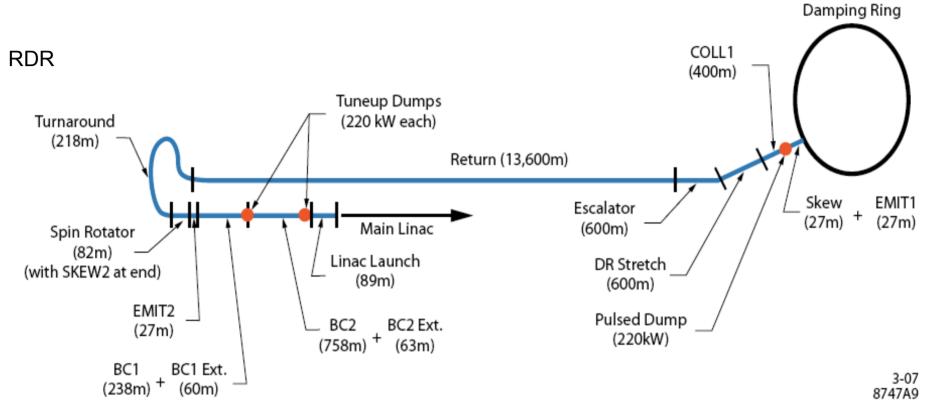
Emittance preservation in the

RTML of ILC and CLIC

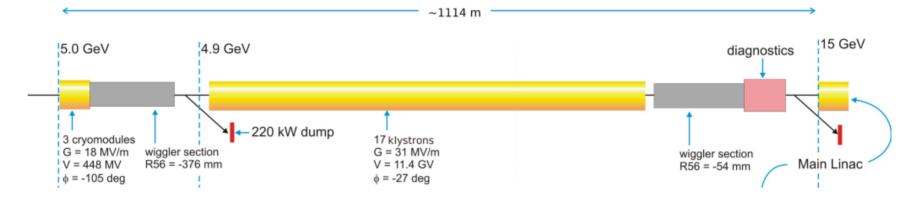

Andrea Latina (CERN) Nikolay Solyak (FNAL)

LCWS 2012 - University of Texas at Arlington - Oct 22-26 2012

Table of contents

- Ring to Main Linac section in ILC : RDR and SB2009 designs
 - Bunch Compressors designs
 - Expected performance
- Ring to Main Linac section in CLIC
 - Design
 - Expected performance

ILC-RDR RTML Layout


Entrance beam parameters

- Initial bunch length = 6/9 mm
- Final Bunch length = 1 mm
- Initial energy = 5 GeV
- Initial energy spread < 0.15%

Exit beam parameters

- Bunch length = 0.3/0.15 mm
- Energy = 15 GeV
- Energy spread = 1.07%

RDR Baseline: Two-Stage Bunch Compressor

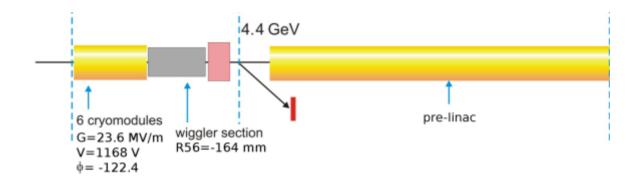
- Compression from 6/9 mm at DR exit to 0.2/0.3 mm at ML entrance

Stage 1: at 5 GeV, bunch length down to about 1 mm

Stage 2: from 5 to 15 GeV, bunch length down to 200/300 um

- Compression ratio: up to ~45
- Two diagnostics stations
- Two extraction lines

RTML for SB2009

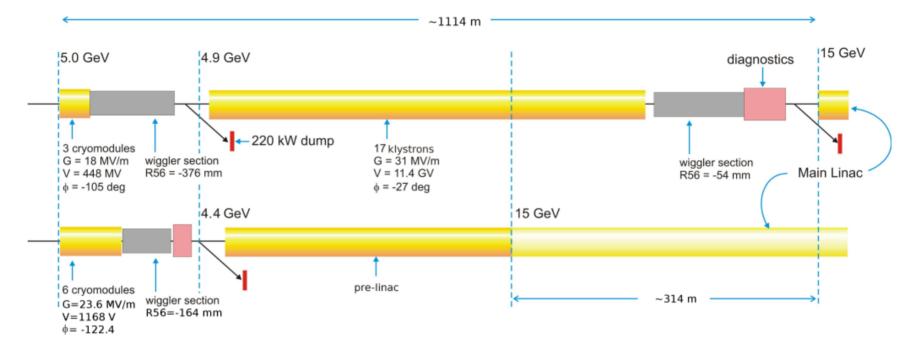

- Major modifications to the RTML lattice are:
- 1) Single-stage bunch compressor

2) Re-design of the second extraction line, after bunch compressor, to accommodate larger energy spread (4% vs. 2.5%)

3) Re-design of the RTML lattice in central integration area, associated with new layouts of the DR, electron and positron sources and BDS

- S-shape curved DR-to-Linac transition (in horizontal plane)
- Vertical dogleg
- Extraction line
- Correction, Diagnostics and Collimation sections

SB2009: Single-Stage Bunch Compressor



- New design of the Damping Rings allows 6 mm bunch length
- Final bunch length fixed to 0.3 mm
- Compression factor can be reduced to ~20

Design:

- BC1S: 6 crymodules RF section from 5 to 4.37 GeV; Wiggler; Diagnostics; Extraction
- Pre-linac: from 4.37 to 15 GeV, configuration and parameters are identical to those of main linac
- now it is considered as an extension of the ML

BC1+BC2 and BC1S: Differences

What we gain:

- Reduction in beamline and associated tunnel length (~314 meters)
- Removal of the second 220 kW/15 GeV beam dump and extraction line components

7

- Removal of one section of the beam diagnostics

What we loose:

- Less flexibility (not support for 200 um bunch length)
- Larger energy spread at BC exit: 3.5% @ 4.4 GeV
- Emittance preservation and additional tuning issues (e.g. DFS in the main linac)

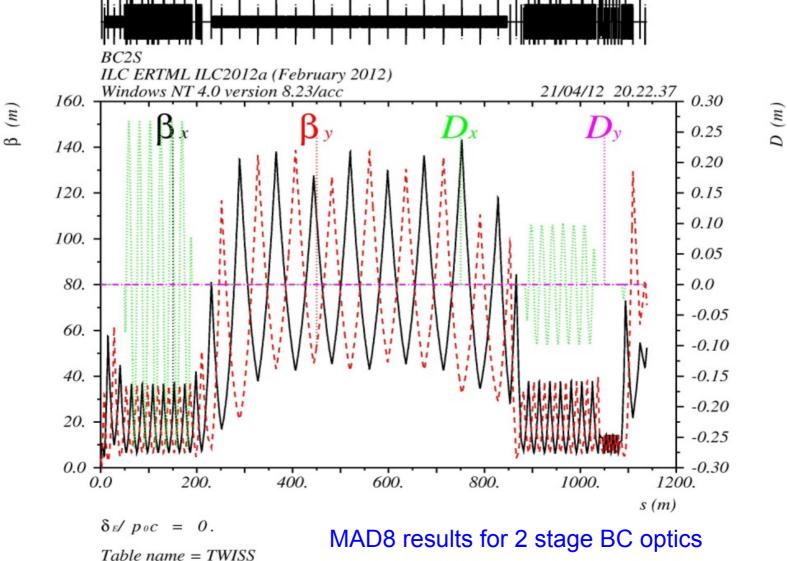
Beam Parameters

• BC1

- Initial bunch length = 6/9 mm
- Final Bunch length = 1 mm
- Initial energy = 5 GeV
- Final energy = less than 5 GeV
 Initial energy spread = 0.15%
- Final energy spread = 2.5%

• BC2

- Initial bunch length = 1 mm
- Final Bunch length = 0.3/0.15 mm
- Initial energy = less than GeV
- Final energy = 15 GeV
- Initial energy spread = 2.5%
- Final energy spread = 1.07%

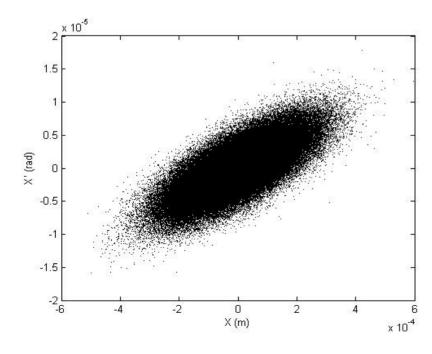

• BC1S

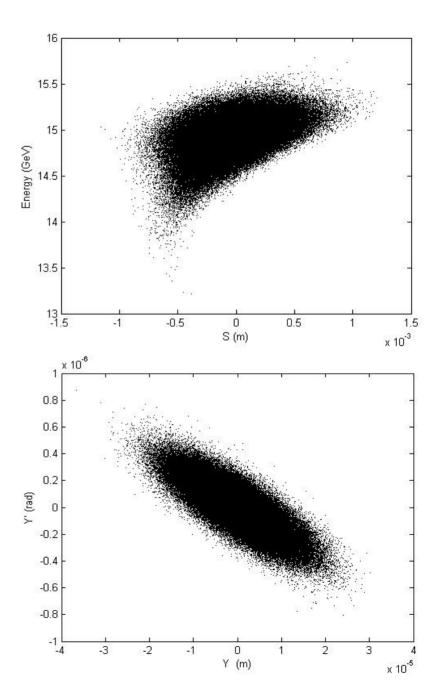
- Initial bunch length = 6 mm
- Final Bunch length = 0.3 mm (0.265 mm)
- Initial energy = 5 GeV
- Final energy = 4.37 GeV
- Initial energy spread = 0.15%
- Final energy spread = 3.5% (4.13%)

- Pre-Linac
- Bunch length = 0.3 mm
- Initial energy = 4.37 GeV
- Final energy = 15 GeV
- Initial energy spread = 3.5%
- Final energy spread = 1.08% (1.18%)

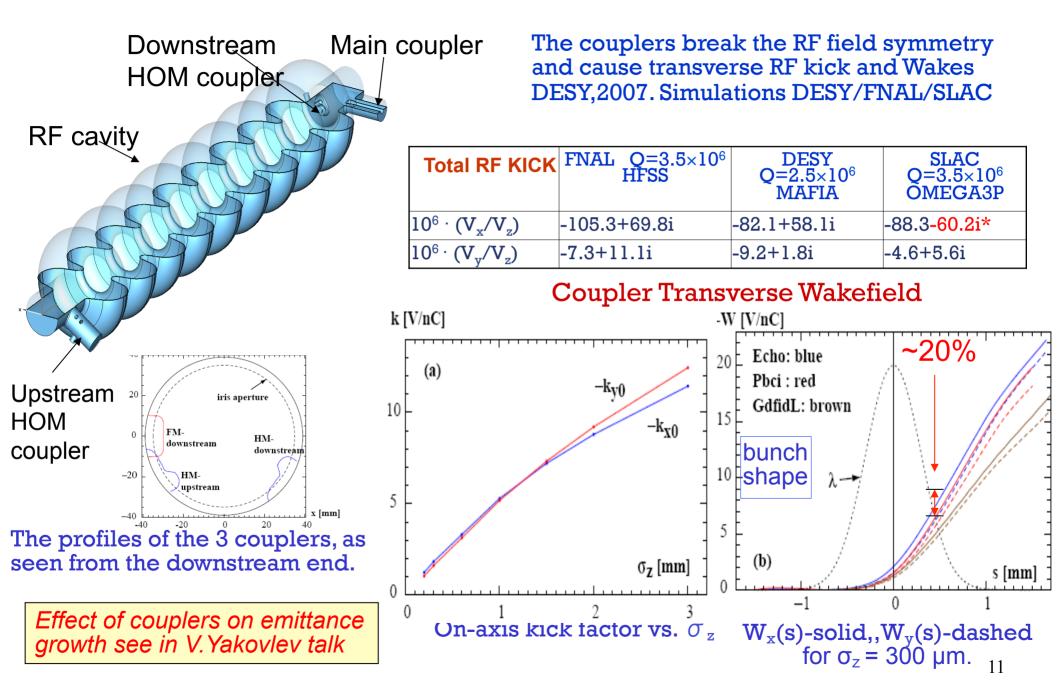
Two-Stage Bunch Compressor Optics

Use ILC type CM in BC1 and BC2 (was different styles in RDR) Minor modifications in Wiggler parameters Optimized for 6 mm bunch length

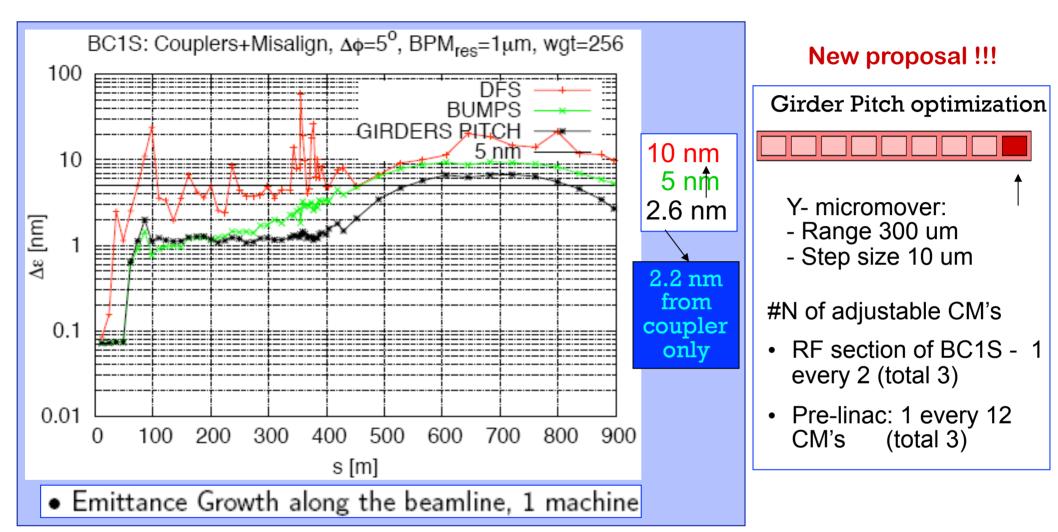



9

Simulations of ILC 2-stage BC

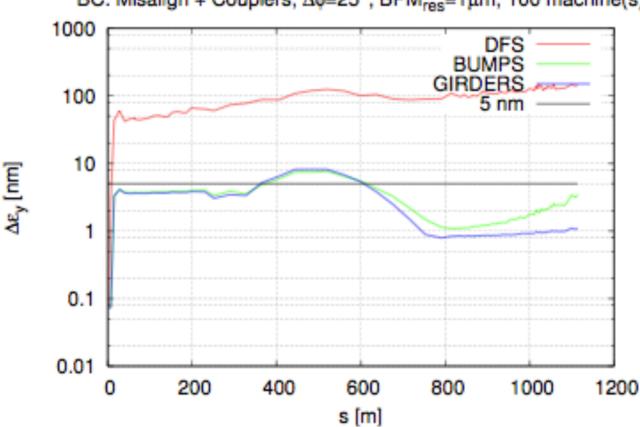

Parameters:

Initial Energy: 5 GeV Initial Norm. Emittance (H/V): 8e-6/20e-9 m rad Acc. Gradient (BC1/BC2): 18.7/27.1 MV/m Total Voltage (BC1/BC2): 465/11700 MV RF phase (BC1/BC2): -115/-30 deg R_{56} (BC1/BC2): -375.8/-55.2 mm Norm. Emittance Growth (H/V): <0.75/<2.0 % Final Energy: 14.91 GeV



Simulations of Coupler Kick and Wakes

ILC LET Workshop CERN, June 23-25, 2009


Coupler and Misalignments in BC1S

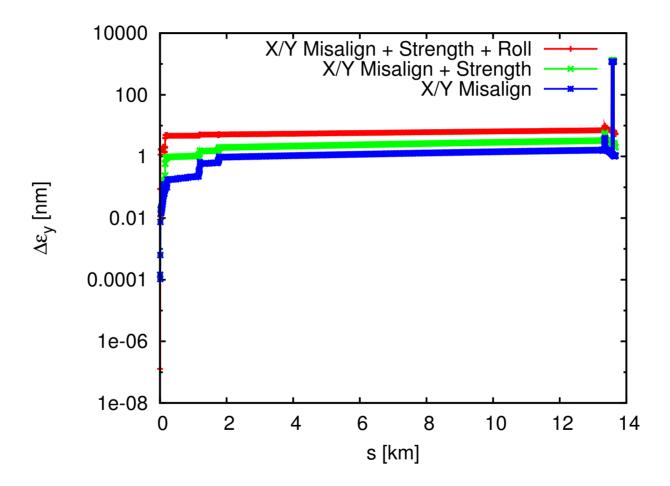
- BC1S (incl. diagnistics+matching+Pre-linac (5→15 GeV))
- Standard misalignments (300 um/300urad); ISR +coupler RF kick/wake
- 1-to-1, DFS and bumps, girder optimization

Coupler and Misalignments in BC1+BC2

- Correction: 1:1 + DFS + Dispersion Bumps + Girder Optimization
- Emittance growth along the line for 100 seeds:

BC: Misalign + Couplers, Δφ=25°, BPMres=1µm, 100 machine(s)

- \Rightarrow Minimum of the emittance is at $\omega = 2048$
- \Rightarrow Average of final vertical emittance growth is 1.09 nm (1.48 nm 90% c.l.)
- IWLC 2010 Workshop CERN, October 18-22, 2010


Emittance growth summary in BCs

Region	Errors	Emittand	ce Increase (nm)	Correction		
		average	90% CL			
BC1+BC2	X/Y/X'/Y' Offsets	0.98	1.6	DFS + knobs + Girders		
	+ Quad Strength	-	-	DFS + knobs + Girders		
BC1+BC2 w/Couplers	X/Y/X'/Y' Offsets	1.09	1.48	DFS + knobs + Girders		
	+ Quad Strength	-	-	DFS + knobs + Girders		
BC1S w/Couplers	X/Y/X'/Y' Offsets	2.3	-	DFS + knobs + Girders		
	+ Quad Strength	-	-	DFS + knobs + Girders		

- Emittance growth due to <u>misalignments and couplers</u> seems to compensated both for BS1S and BC1+BC2
- Girder pitch optimization is very effective to counteract coupler kicks, both for BS1S and BC1+BC2
- In BC1S, Crab Cavity seems to be similar effective, but it would require a new hardware and slight redesign of the cryomoodule

Emittance Growth in "Front-End"

- Correction: 1-TO-1 + Kick Minimization + Dispersion Bumps + Coupling Correction
- Emittance growth along the line for 1000 seeds:

⇒ X/Y Offsets: Final average emittance growth is 1.06 nm (1.58 nm 90% c.l.) ⇒ Add Quad/Sbend Strength: Final average emittance growth is 2.01 nm (3.51 nm 90% c.l.) ⇒ Add Quad/Sbend Roll: Final average emittance growth is 5.36 nm (9.94 nm 90% c.l.)

15

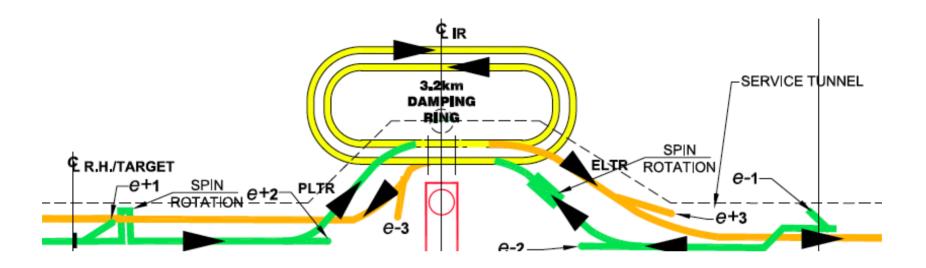
Emittance Growth in RTML

Region	Errors	Emittance Increase (nm)		Correction
		average	90% CL	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	X/Y Offsets	0.48	0.52	KM + knobs + CC
	+ Quad Strength	0.68	1.25	KM + knobs + CC
	+ Quad/Sbend Roll	1.87	3.23	KM + knobs + CC
Turnaround + Spin Rotator	X/Y Offsets	2.26	5.33	KM + knobs
(OFF)	+ Quad/Sbend Strength	3.69	8.12	KM + knobs
	+ Quad/Sbend Roll	6.11	12.73	KM + knobs
Turnaround + Spin Rotator	X/Y Offsets	2.14	4.83	KM + knobs
(ON)	+ Quad/Sbend Strength	4.63	9.42	KM + knobs
	+ Quad/Sbend Roll	6.86	13.66	KM + knobs
Entire "Front End"	X/Y Offsets	1.06	1.58	KM + knobs + CC
	+ Quad/Sbend Strength	2.01	3.51	KM + knobs + CC
	+ Quad/Sbend Roll	5.36	9.94	KM + knobs + CC

- Dynamic effects are not included
- Emittance growth is large (pre-RDR budget 4nm, might be $\leq 10nm$)
- Need further studies to reach goal for emittance growth
- Cross-checking with different codes (important)

ILC RTML Extraction Line Summary

S. Seletskiy


ILC RTML extraction line located downstream a single-stage bunch compressor was finalized.

- The extraction line is capable of accepting and transmitting up to 220kW of beam power.

- The EL can be used for both fast intra-train and continual extraction, and is capable of accepting both 0.15% and 3.54% energy spread beams at 5MeV and 4.37MeV respectively.

This design can be tweaked. For instance one can reduce strength of the sextupoles sacrificing size of the beam dump window.

Central Area

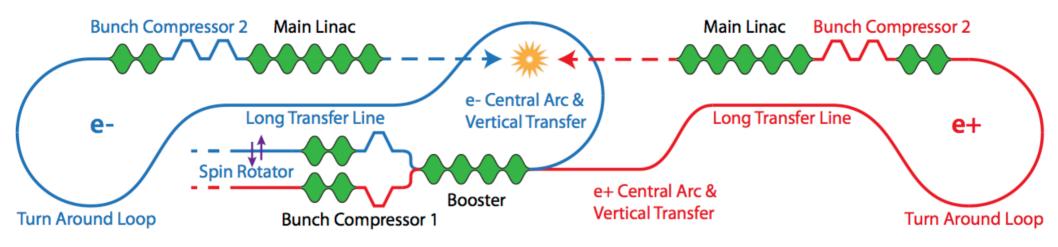
In SB2009, damping rings circumference has been reduced to 3.2 km

RDR DR extraction was at about 1 km from the central plane, in the direction of the turnaround, now the DR ext is located at about 100 meters from the central plane

This change required a redesign of the beamlines. This resulted in a simplification of their geometries in terms of number of horizontal and vertical doglegs

Main advantage of this change is the simplification in the overall layout

Possible risks might arise from the performances of the new system from the point of view of the low emittance transport

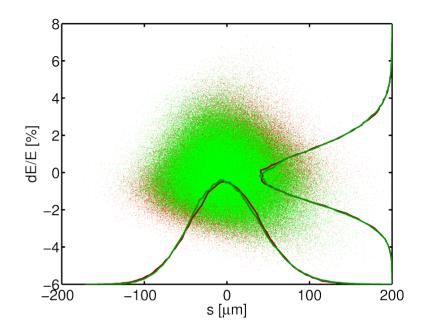

Proposed Relevant Studies

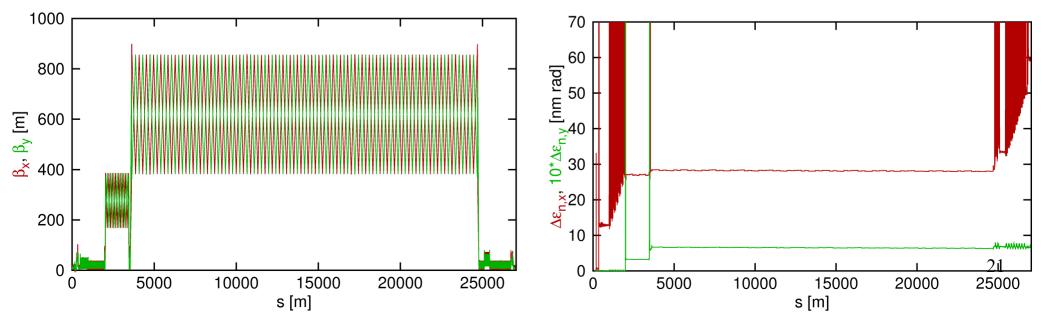
Beam physics simulation to study effect of coupler RF kick, alignment and phase/amplitude stability of the RF system and provide requirements. The goal to demonstrate that RTML emittance budget can be achieved and beam parameters at the exit of RTML system provide acceptable emittance budget in Main Linac

Experimental studies of amplitude and phase stability, required for singlestage bunch compressor at FLASH/DESY facility (9 mA studies). This study is required to both RDR and SB2009 configurations

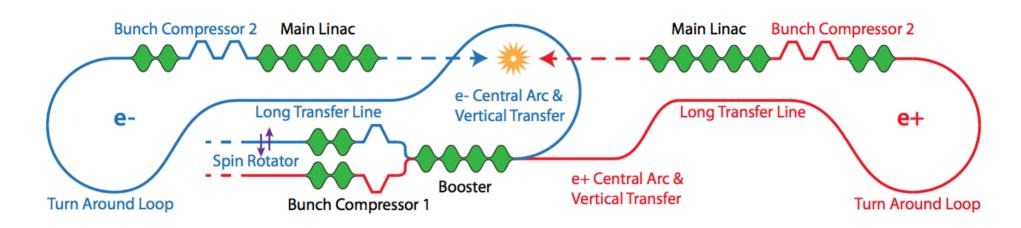
Re-design RTML section from DR tunnel to ML tunnel. It requires close coordination with other AS involved: DR and electron/positron sources.

CLIC RTML

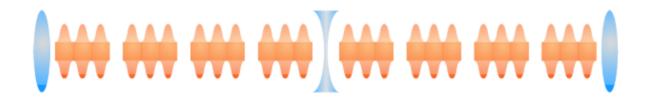

E ₀	2.86	GeV
Q_0	0.65	nC
$\sigma_{\!\scriptscriptstyle m S}$	1600	μm
$\sigma_{\rm E}$ / E_0	0.13	%
$\sigma_{\!E}$ / E_0	0.13	%
u	0	1/m
<i>E</i> _{n,x}	500	nm rad
<i>E</i> _{n,y}	5	nm rad
Р	?	%
$\varDelta \phi$	0	deg
	Q ₀ σ _s σ _E / E ₀ σ _E / E ₀ α ε _{n,x} ε _{n,y}	0 0 Q_0 0.65 σ_s 1600 σ_E / E_0 0.13 σ_E / E_0 0.13 u 0 $\varepsilon_{n,x}$ 500 $\varepsilon_{n,y}$ 55 P q


@ exit of damping rings

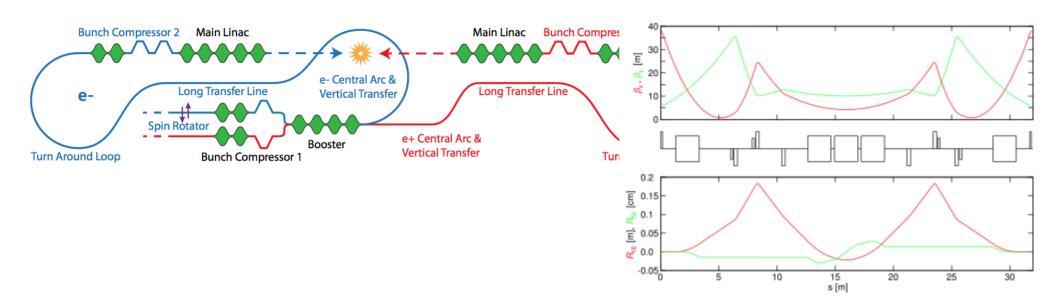
Particle energy	E ₀	9	GeV			
Bunch charge	Q_0	> 0.6	nC			
RMS bunch length	$\sigma_{\!\scriptscriptstyle m S}$	44	μm			
RMS energy spread	$\sigma_{\rm E}$ / E_0	< 1.7	%			
uncorr. energy spread	$\sigma_{\!E}$ / E_0	< 1.7	%			
Energy chirp	и	0	1/m			
Normalized emittance	<i>E</i> _{n,x}	< 600	nm rad			
	<i>E</i> n,y	< 10	nm rad			
Polarization	Р	?	%			
Phase offset 12 GHz	$\varDelta \phi$	0	deg			
@ entrance of main linac						


CLIC RTML Status (post CDR)

- A complete set of lattices exists
- ISR, CSR and short-range wakefields have been considered
- Design shows good performance (within the specifications)
- First evaluations of misalignment tolerances have been performed in the return line and turn around loops:
 - micron range, tightest in turn around loops
 - DFS works for pre-alignment of ~100µm (sextupoles ~50µm)



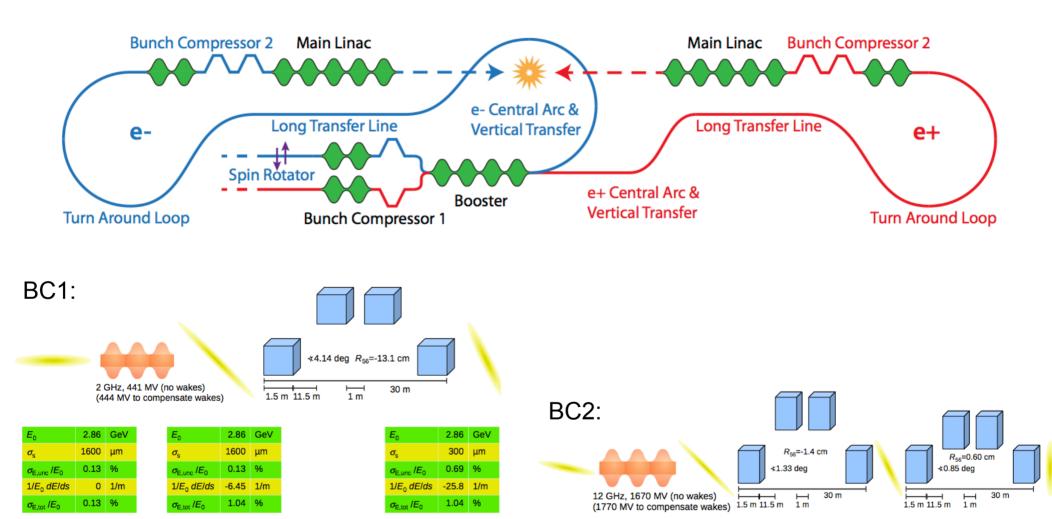
Layout: Booster Linac



• Electrons and positrons share the same booster linac, from 2.86 to 9 GeV energy

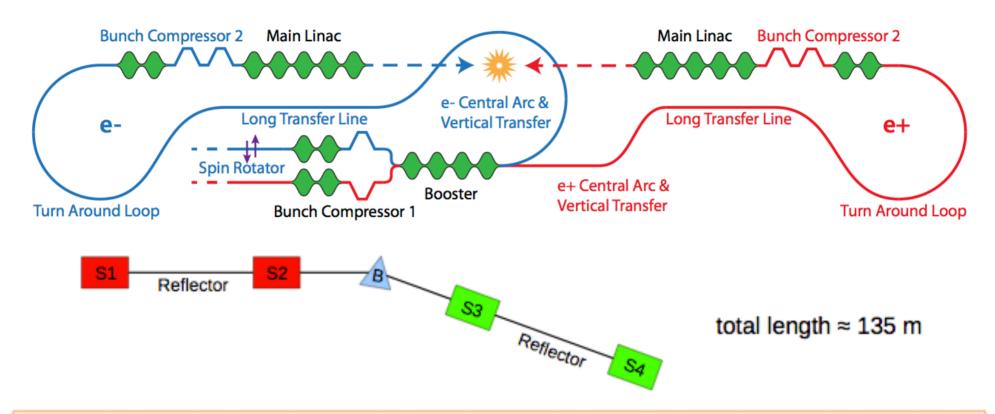
6140 MV integrated voltage, 2 GHz frequency, 15 MV/m gradient, 410 m of cavities, 1.5 m cavity length, 274cavities embedded in a FODO lattice with 8 cavities per cell, total length 472 m.

Layout: Transfer Lines



 Each RTML consists of about 26.3 km of beamlines: 21km for each transfer lines; 2km for each turn around loop

The long transfer lines use a FODO lattice with 438m long cells for 9 GeV beam energy

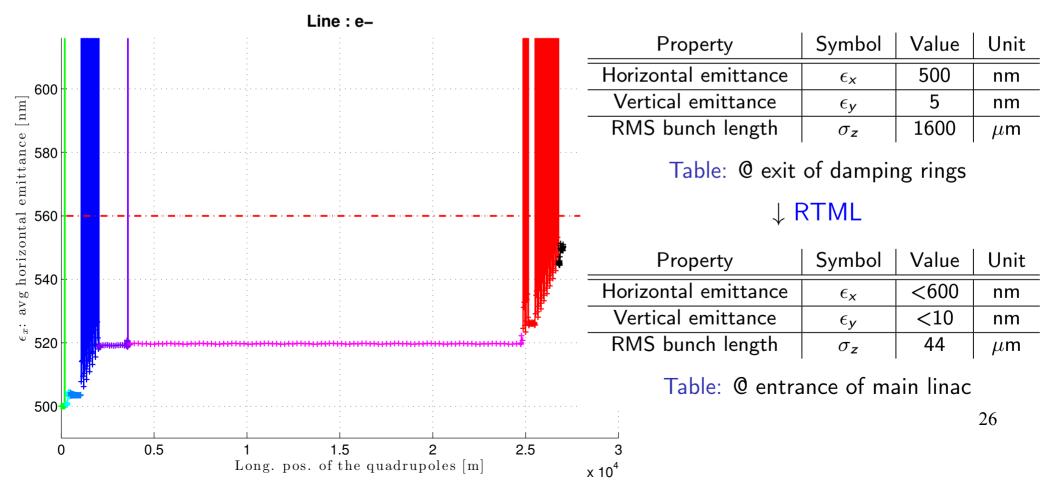

- Fast ion beam instability, resistive wall wakes, stray fields
- TA uses a complex achromatic and isochronous lattice with strong quadrupoles and sextupoles: 2km long, 822 magnets
- TA is tuned to minimize emittance growth induced by ISR (CSR is sufficiently weak)
- The central electron arc uses the same lattice as the turn around loop. All other arcs are at least similar to the turn around loop.

Layout: Bunch Compressors

E ₀	9	GeV	E ₀	9	GeV	<i>E</i> ₀	9	GeV	<i>E</i> ₀	9	
$\sigma_{\rm s}$	300	μm	$\sigma_{\rm s}$	300	μm	$\sigma_{\rm s}$	100	μm	$\sigma_{\rm s}$	44	
$\sigma_{\rm E,unc}$ / E_0	0.22	%	$\sigma_{\rm E,unc}$ /E $_0$	0.22	%	$\sigma_{\rm E,unc}$ /E ₀	0.66	%	$\sigma_{\rm E,unc}$ /E ₀	1.6	
1/E ₀ dE/ds	-8.21	1/m	1/E ₀ dE/ds	-49.5	1/m	1/E ₀ dE/ds	-135	1/m	1/E ₀ dE/ds	24 °	
$\sigma_{\rm E,tot}$ /E ₀	0.25	%	$\sigma_{\rm E,tot}/E_0$	1.14	%	$\sigma_{\rm E,tot}$ /E ₀	1.14	%	$\sigma_{\rm E,tot}$ /E ₀	1.6	

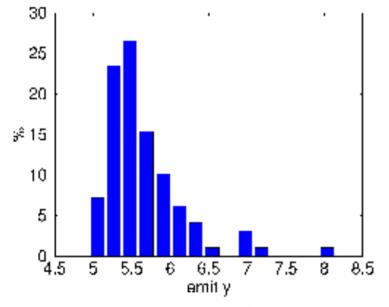
Layout: Spin Rotator

To avoid spin dilution the spin vector is oriented in vertical direction in the damping rings

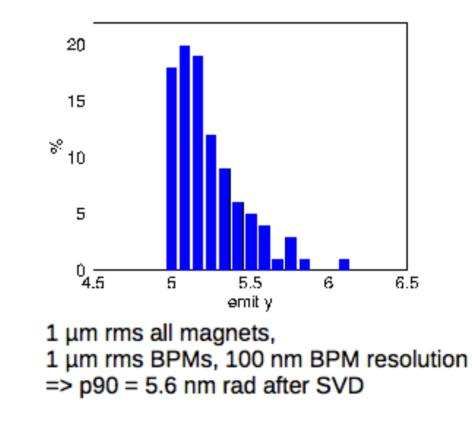

Any orientation of the SR at IP should be possible

 Since injectors and main tunnel are parallel the electron spin rotator can be located in front of BC1. All bends after rotation are compensated (figure-eight movement) and energy spread will not induce any spin dilution (for the positrons, as the bends are not fully compensated (180 deg total bending), a 2% polarization loss would be induced)

CLIC RTML emittance budgets


	design	static	dynamic
$\Delta \epsilon_x[nm]$	60	20	20
$\Delta \epsilon_y[nm]$	1	2	2

e- line: horizontal emittance



Misalignment in the Turnaround

- each turn around loop consists of 822 magnets and is ~2 km long
- → outgoing beam position has to stay within 10% of beam size, in vertical plane ~1 µm beam size => 100 nm tolerance => 100 nm BPM resolution

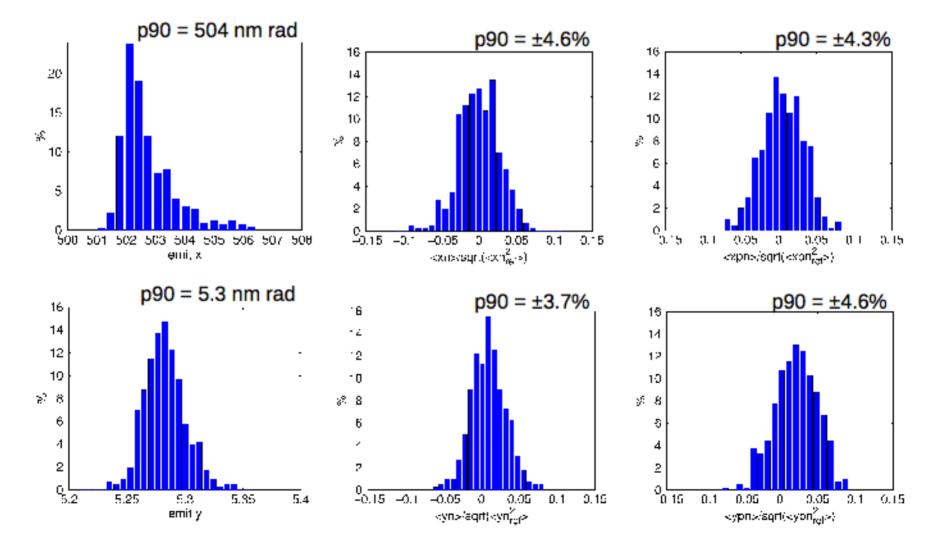
100 μm rms quads and bends, 50 μm rms sextupoles, 1 μm rms BPMs, 100 nm BPM resolution => p90 = 6.2 nm rad after DFS

A trivial but important remark: Outgoing beam position jitter depends only on 27 our knowledge of BPM position and BPM resolution at the end of the loop!

Static alignment tolerances

- Acceptable static misalignments after beam-based alignment (BBA) to produce 1 nm emittance growth
- 1 um BPM resolution
- In progress work: fine tuning of the parameters will lead to improvement (*)

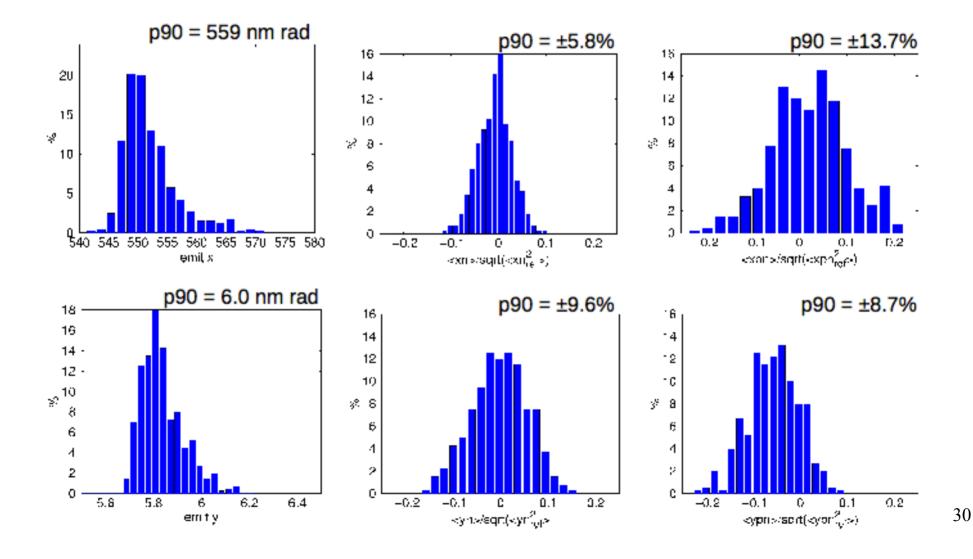
Subsystem	Tol. after 1:1 - $[\mu m]$	Tol. after DFS - $[\mu m]^{\dagger}$
BC1	17 (11)	55 (24)
BOO	29 (19)	45 (23)
CA	7 (5)	14 (7)
LTL	153 (88)	280 (150)
TAL	6 (4)	9 (5)
BC2	1.4 (0.8)	3.5 (2)


† Average tolerance and percentile 90 in brackets.

- \blacktriangleright In SR and LTL tols. seem slack $\lesssim 200 \mu m$
- ▶ In BC1 and Booster, tols. seem moderate $\lesssim 50 \mu m$
- In CA (VT), TAL and BC2, tols. seem tight $\lesssim 15 \mu m$

(*) with 0.1 um resolution BPMs the tighter tolerances are relaxed by a factor \approx 1.3.

Incoming Beam Jitter


5% rms incoming electron beam jitter (Gaussian) \approx 90% of cases within ±8% jitter, no correction, no misalignment, plots show final distribution in normalized phase space, no ISR, no wakes

29

Incoming Beam Jitter

5% rms incoming electron beam jitter (Gaussian) ≈ 90% of cases within ±8% jitter, no correction, no misalignment, plots show final distribution in normalized phase space, with ISR and short range wakes

CLIC Beam Physics R&D Program

Performances studies: magnet misalignments, magnet field errors, incoming bunch jitter, couplers' wakes, multi bunch wake fields, collimator wakefields

Design of missing sections:

Diagnostics (in progress) Pre-linac Collimation (in progress)

Study transverse and longitudinal stability (in progress)

Design of feed-back and feed-forward loops for controlling dynamics imperfections

Conclusions

- Extensive studies exist both for CLIC and ILC
- CLIC shows tighter tolerances, optics review might be needed
- Dynamic studies need to be performed
- Longitudinal stability and feed- back / forward loops to cure dynamic imperfections
- None of these studies seems critical

Acknowledgements

These results have been obtained by the efforts of many people

CLIC Beam Physics Group:

• D. Schulte, F. Stulle, A. Ferrari, T. Lienart, L. Rinolfi, S. Doebert et al.

ILC International Collaborators:

• N. Solyak, K. Ranjan, K. Kubo, J. Smith, S. Seletskiy, P. Tenenbaum, N. Walker, F. Poirier et al.