ScEcal response, combined calorimeters study

Boris Bulanek

Charles University, IPNP

5. March 2012

Content

Linearity and Resolution of ScECAL on electrons

2 Purification of π^- sample

Energy response of combined calorimeters

Beam setup

- Distances for setup with ScECAL written in red.
- ScECAL: 3.5 mm mainly tungsteen, 3.0 mm scintillator
- AHCAL: 2 cm steel absorber-0.5cm scintillator
- TCMT: 8x 2cm steel (TCMT1) and 8x 10cm steel (TCMT2) absorber, 0.5cm thick scint. stripes
- 10x10 cm trigger for e, π^- runs (1-32) GeV, 20x20 cm trigger for muon 32 GeV runs
- differential Cerenkov counter for $e-\pi$ selection
- ullet veto wall for halo events exclusion and 100x100 trigger for μ selection

ScECAL

- build and operated by the Japanese CALICE groups
- strip detector, strips (10x45) mm
- absorber 88% tungsteen, 12% cobalt 0.5% carbon, equipped with 40x40 pixels MPPC
- 72 strips in one layer, 30 layers, $21.3 \cdot X_0$ depth
- built together with AHCAL and TCMT in MT6 area, FNAL
 - runs taken in September 2008 and May 2009 (used for further study)
- analysis of response on electrons from September 2008 in CAN-016: First Stage of the Energy Response adn Resolution of the Scintillator ECAL in the Beam Test at FNAL. 2008

Linearity and resolution of electrons

$$\bullet$$
 $E = a + b \cdot x$

•
$$a = (33.0 \pm 0.2) \text{ MIP}$$

•
$$b = (127.50 \pm 0.02) \text{ MIP/GeV}$$

- deviation from linearity ≈ 1-2 (CAN-016: 6 % using a=0 MIP)%
- CAN-016: $\sigma(E)/E = (a/\sqrt{E} \oplus b)$
 - ► Central: Const : $(1.59 \pm 0.03)\%$ Stoch : $(14.80 \pm 0.04)\% \cdot \sqrt{GeV}$

•
$$a = (14 \pm 0.1)\% \cdot \sqrt{GeV}$$
 $b = (2.20 \pm 0.04)\%$ $c = (0 \pm 0.3) \cdot GeV$

Purification of π^- sample, cuts inherited from Nils Feege thesis

- events scattered before reaching AHCAL first 5 layers with energy > 4 MIP
 - ▶ 96 % AHCAL pedestal exclusion → 96% of spurious trigger events excl.
 - reproduced 96 % efficiency for ScECAL: first 7 layers of ScECAL with energy > 7 MIP
- no signal in a veto wall (efficiency 40 %)
- multiplicity counter cut signal in (2200,3800) ADC
- outer cherenkov excluded (e selection), inner cherenkov signal >6 GeV, no inner cherenkov(<6 GeV)
- scintillator behind TCMT for muon selection (20 % eff. from veto+1x1m)
 - > 4 GeV: first hadron interaction in the AHCAL or ScECAL
- cuts for runs below 8 GeV needs additional study using simulations

Used runs

- π⁻ from FNAL-2009 test-beam period
- energies: 2,4,12,15,20,32 GeV
 due to problems of μ separation used only energyies >=12 GeV
- DAQ of some runs above 6 GeV with signal from an inner cherenkov tube

Track finder and shower start finder

- CED event display developed in common frame with AHCAL and TCMT in cooperation with Katsushige Kotera
- due to selection of electrons developed a shower start finder also for a ScECAL
- the track position in ScECAL: x position of vertical and y position of horizontal strips (yellow)

Check of relative position of ScECAL and AHCAL

- for all of runs the ScECAL is centered relative to AHCAL (left)
- energy profiles shows no problem with layers ordering

Shower start layer in ScECAL

- shower start layer in ScECAL before(after) cut on a cherenkov signal in inner and outer tube
- exclusion of events with shower start layer <= 3 in ScECAL

Exclusion of halo events

- without Ecal cuts on # hits in 6x6 and 12x12 cm cells in first 5 layers, Nils thesis
- possible cut on halo events with shower starts in the AHCAL

exclusion of no(multi)-particle events

- multiplicity counter behaviour quite the same for all energies (left).
- \bullet set $\mathtt{multiADC} > 2200$ to exclude no particle events
- \bullet set $\mathtt{multiADC} < 3800$ to exclude multi particle events
- Right: Energy spectrum in AHCAL+TCMT1 with shower st.l. in AHCAL
- ullet still emergence of additional μ peak

Using TCMT2 as a veto; energy cut on TCMT2

- ullet exclusion of 97 % of 32 GeV μ events
- exclusion of 35 % of beam events for 32 GeV (left)
- ullet exclusion of 21 % of beam events for 12 GeV (right)
- exlusion 11 % noise events → exlusion of 11 % of good events

Energy spectra in AHCAL+TCMT1 after π^- selection

- ullet No additional μ peak for energy spectra of AHCAL+TCMT1 with shower start in the AHCAL
- 32 Gev π^- left, 12 GeV π^- right

Weighting factors energy dependence

Formula for rec. energy:

 $E = w_{ScECAL} \cdot E_{ScECAL} + w_{AHCAL + TCMT1} \cdot E_{AHCAL + TCMT1}$

- ullet Formula for $\chi^2({
 m Right fig.}): ((\sum_i w_i \cdot E_i) p_{beam})^2 \ i = \{{
 m ScECAL, HCAL + TCMT1}\}$
- \bullet energy dependence of AHCAL and TCMT1 weights for energies $<12~\mbox{GeV}$
- Formula for $\chi^2:((\sum_{beam}(\sum_i w_i \cdot E_i) p_{beam})(+const = 0))^2$

Linearity and Resolution of combined calorimeters

- $\bullet \ w_{ECAL} = 9.611 \pm 0.002 \ \mathrm{MeV/MIP}$
- $\begin{aligned} \bullet \ \ w_{HCAL} &= 26.931 \pm 0.002 \ \mathrm{MeV/MIP} \\ & \quad \bullet \ \ (\mathrm{CAN\text{-}}029: w_{HCAL} = 27.6 \ \mathrm{MeV/MIP}) \end{aligned}$
- $\begin{array}{l} \bullet \ \ a = (48.1 \pm 0.3)\% \cdot \sqrt{GeV} \quad \ b = \\ (6.2 \pm 0.1)\% \quad \ c = (0 \pm 2) \cdot GeV \end{array}$

• $w_{AHCAL}/w_{ScECAL} = 2.802 \pm 0.003$

• Estimation of w_{AHCAL}/w_{ScECAL} from sh.st. layer: $A \cdot \exp[-\lambda \cdot \text{layer}] \quad \lambda_{AHCAL}/\lambda_{ScECAL} \approx 3$

Example of an energy spectrum with application of weights 32 GeV

Example of an energy spectrum with application of weights 20 GeV

Conclusion

- developed tools for finding the track and the shower start layer in ScECAL
- found consistency of the ScECAL response on electron for our dataset with the study using FNAL-2008 data
- estimated the weights for ScECAL and AHCAL+TCMT1 for energy response correction
- needed further investigation of cuts using now developed simulation of test-beam setup with ScECAL

Acknowledgement

- Katsushige Kotera for intensive cooperation, help with the ScECAL reconstruction software and organizing the phone meeting
- Katsushige Kotera and Shaojun Lu for their implementation of ScECAL in the CALICE analysis frame

Backup

Linearity and Resolution using low energies

$$\bullet \ \sigma(E)/E = (a/\sqrt{E} \oplus b \oplus c/E)$$

•
$$a = (45 \pm 0.8)\% \cdot \sqrt{GeV}$$
 $b = (0 \pm 0)\%$ $c = (0 \pm 0) \cdot GeV$

ScECAL reconstruction

changed the

ScECAL noise in first 7 layers

ScECAL response on electrons, topological purification of sample

- Eletron selection problems:
 - double particle events
 - π^- events
 - contamination lateral profile
- Cuts:

 $\frac{E_{ECAL}}{E_{ECAL+HCAL+TCMT}} > \\ \text{CUT; CUT} = 0.9 \\ \text{multiplicity counter} \\ \text{amplitude}(2000, 5000) \\ \text{shower center in} \\$

- 20x20 mm square around the ScECAL center
- # events after selection > 1000

- For creating pure one-event electron samples using Trackwiseclustering algorithm to separate only one cluster
 - parameters of clustering algorithm changed on the fly $(R_{ij}, A_{ij}): (92, 25) \rightarrow (10, 10)$

18 / 18