SceCal software status 5th, March 2012 CALICE meeting in Shinshu K. Kotera, Shinshu University

In Heidelberg

Inputs for analysis	Current status
DAQ-strip Mapping	Data base class not yet
adc/MIP conversion factor	 Analyzing processordone, data handling processordone, data base was already uploaded.
Inter calibration constants	 Analyzing processornot yet (root analysis) data handling processordone, data base was already uploaded.
Gain (one p.e. sensitivity)	 Analyzing processordone, data handling processordone, data base was already uploaded.
Temperature (stand alone meas. for 2009)	 read out processor for each event not yet data base upload has not been yet done.
Noisy channels	- Local data file
AHCAL layer pos(z)	- Local data file
MPPC Npix	Basic study is on going in Shinsu

Today

Inputs for analysis	Current status
DAQ-strip Mapping	Data base class b done and uploaded.
adc/MIP conversion factor	 Analyzing processordone, data handling processordone, data base was already uploaded.
Inter calibration constants	 Analyzing processornot yet (root analysis) data handling processordone, data base was already uploaded.
Gain (one p.e. sensitivity)	 Analyzing processordone, data handling processordone, data base was already uploaded.
Temperature (stand alone meas. for 2009)	- Temp. readout processor (Temp.Getter) for each event has been made and DB was uploaded.
Noisy channels	- data handling processor <mark>done</mark> , not uploaded
AHCAL layer pos(z)	- tried to read AHCAL DB, faild
MPPC Npix	for 72/2160 channel, each Npix is measured.

ScECAL prototype module driver in Mokka

- Status
 - There was no driver of ScECAL FNAL prototype in MOKKA.
 - To make it was a task on me at Heidelberg.
- Steps
 - 1st stage:
 - non-uniformity of materials in lateral direction are averaged.
 - 2nd stage:
 - detail structure of materials will be implemented.

SG U N N frame. **es** 0 ື absorber U

σ () put on the absor S Ŭ 72 scintillator rêt têt 3 enveloped 6

Thickness and density of materials

	ingredients	density (g/cm ³)	Thick (mm)			
absorber	W:C:Co:Cr*	14.7	3.500			
reflector	PET	1.35	0.114			
Scintillator	polystyrene	1.032	3.019			
reflector	PET	1.35	0.057			

* Chemical compound of absorber was determined by using energy dispersive X-lay spectrometer and X-lay diffraction analyzer.

covered with black sheet.

\mathbf{O} 1 D \mathbf{O} **D** σ σ

10

Vered **()** ac complete ¢ 3

Thickness and density of materials

	ingredients	density (g/cm ³)	Thick (mm)				
absorber	W:C:Co:Cr*	14.7	3.500				
reflector	PET	1.35	0.114				
Scintillator	polystyrene	1.032	3.019				
reflector	PET	1.35	0.057				
Flat cable etc	mix*	0.829	0.995				

* Flat cable-polyimide, black sheet-PVC, G10-from Geant4, Clear fiber-polyacrylate, black tape-PVC, air vacancy.

$(\boldsymbol{\mathcal{N}})$ う Π S nmm gao Φ σ S () layei $\overline{\mathbf{u}}$ S gab \boldsymbol{n}

Thickness and density of materials

	ingredients	density (g/cm ³)	Thick (mm)				
absorber	W:C:Co:Cr*	14.7	3.500				
reflector	PET	1.35	0.114				
Scintillator	polystyrene	1.032	3.019				
reflector	PET	1.35	0.057				
Flat cable_etc	mix*	0.829	0.995				
Air gap	N2,02,Ar	1.18x10 ⁻³	1.238				

TBscecal00 (in Boris's talk) TBscecal01 45 x 10 mm² strips displayed by Dluid

Parameters:

Density of absorber and cable_etc, Rotation angle, Translate x and y, grid size, Mass fraction ration of compounds of absorber.

Data base issues:

x center, y center and z center are 0 mm, 0 mm, and -200 mm, x-y lateral size (180 mm), the number of layers 30, thickness of materials in table.

Summary

• DB

- Data base for ScECAL prototype is almost done.
 - We need blush up and then release it.
- Implementation of ScECAL prototype in Mokka.
 - 1st stage is already done.
 - comparing energy resolution, longitudinal and lateral projection, position resolution, ... with data
 - More real geometry will be implemented if it will be needed.

Backup

as the first version

grid 1mm x 1 mm

	ingradientsfi	density (g/cm ³)	Thick (mm)		
absorber	W:C:Co:Cr	14.7	3.500		
reflector	PET	1.35	0.114		
Scintillator	polystyrene	1.032	3.019		
reflector	PET	1.35	0.057		
Flat cable etc	table*	0.829	0.995		
Air gap	N2,02,Ar	1.18x10 ⁻³	1.238		

table

	material	density (g/cm ³)	weight(%)			
Flat cable	polyimide	1.42	28.26			
Black sheet	PVC	1.44	16.58			
G10	?	1.88	37.97			
Clear fiber	Polyaclilate	1.19	0.63			
Black tape	PVC	1.44	16.49			
Air vacancy	N2,02,Ar	1.18x10 ⁻³	0.07			

Layer 1, 5, 9, 13, 17, 21, 25, 29

Layer 3, 7, 11, 15, 19, 23, 27

00 0 T **P**

CB-ID ... connector board ID-board type Format : LayerID-connectorID

CB-ID	20L	19R	18L	1 7R	16L	15R	14L	13R	12L	11R	10L	9R	8L	7R	6L	5R	4L	ЗR	2L	1R
CN5	2-3	2-1	4-1	6-1	8-3	8-1	10-1	12-1	14-3	14-1	16-1	18-1	20-3	20-1	22-1	24-1	26-3	26-1	28-1	30-1
CN6	2-4	2-2	4-2	6-2	8-4	8-2	10-2	12-2	14-4	14-2	16-2	18-2	20-4	20-2	22-2	24-2	26-4	26-2	28-2	30-2
CN7	2-5	4-5	4-3	6-3	8-5	10-5	10-3	12-3	14-5	16-5	16-3	18-3	20-5	22-5	22-3	24-3	26-5	28-5	28-3	30-3
CN8	2-6	4-6	4-4	6-4	8-6	10-6	10-4	12-4	14-6	16-6	16-4	18-4	20-6	22-6	22-4	24-4	26-6	28-6	28-4	30-4
CN9	2-7	4-7	6-7	6-5	8-7	10-7	12^7	12-5	14-7	16-7	18-7	18-5	20-7	22-7	24-7	24-5	26-7	28-7	30-7	30-5
CN10	2-8	4-8	6-8	6-6	8-8	10-8	12-8	12-6	14-8	16-8	18-8	18-6	20-8	22-8	24-8	24-6	26-8	28-8	30-8	30-6
CN11	1-1	3-1	5-1	5-3	7-1	9-1	11-1	11-3	13-1	15-1	17-1	17-3	19-1	21-1	23-1	23-3	25-1	27-1	29-1	29-3
CN12	1-2	3-2	5-2	5-4	7-2	9-2	11-2	11-4	13-2	15-2	17-2	17-4	19-2	21-2	23-2	23-4	25-2	27-2	29-2	29-4
CN13	1-3	3-3	3-5	5-5	7-3	9-3	9-5	11-5	13-3	15-3	15-5	17-5	19-3	21-3	21-5	23-5	25-3	27-3	27-5	29-5
CN14	1-4	3-4	3-6	5-6	7-4	9-4	9-6	11-6	13-4	15-4	15-6	17-6	19-4	21-4	21-6	23-6	25-4	27-4	27-6	29-6
CN15	1-5	1-7	3-7	5-7	7-5	7-7	9-7	11-7	13-5	13-7	15-7	17-7	19-5	19-7	21-7	23-7	25-5	25-7	27-7	29-7
CN16	1-6	1-8	3-8	5-8	7-6	7-8	9-8	11-8	13-6	13-8	15-8	17-8	19-6	19-8	21-8	23-8	25-6	25-8	27-8	29-8

Structure I

