

SDHCAL Status for DBD

Vincent Boudry École polytechnique

CALICE meeting 07/03/2011

Overview

CALICE criteria for technological readiness (from Roman's presentation)

- Established performance: energy resolution, linearity, uniformity, two particle separation
- Validated simulation: longitudinal and transverse shower profiles, response, linearity and resolution, for electrons and hadrons
- Operational experience: dead channels, noise, stability, monitoring and calibration
- Scalable technology solutions: power and heat reduction, low volume interfaces, data reduction, mechanical structures, dead spaces, services and supplies
- Open R&D issues: analysis and R&D to be completed before a first pre/production prototype can be built, cost reduction and industrialization issues
- Many results presented during last 2 days
 - ► M.C. Fouz's for Imad's talk on m³ building
 - ▶ J. Puerta-Pelayo's talk for the digitisation
 - Y. Haddad talk on TB results
- + external contingencies

Established performances

- Energy resolution, linearity, uniformity, two particle separation
 - ► From simulation only
 - ◆ Untuned PandoraPFA gives similar perf. as the AHCAL on uds jets
- None yet: → first elements in May
 - Until now commissioning: understanding of chambers, taming noise & cooling, debugging DAQ...

Validated simulation:

- Response from cosmic muon's soon
- Digitisation almost ready
 - 2 schemes: from hits, small cells [see presentation from Jesus on Monday]
 - Adjusted on data (Q distribution, Avalanche spread [see Yacine's presentation])

Operational experience:

Dead channels

- At building : ≤20ch / ASU (1536 ch.),
- ▶ During commissioning only a few channels needed to be masked over 400k ch.

Noise

- ➤ ~ few Hz/cm², some pattern (border),
- ▶ dependant on t° → cooling needed
 - one side cooling solution seems OK

Stability

- Aging
 - ◆ 1 (one) ASIC lost out 7200 since May, 2011 with many handling in between
 - ◆ Radiations: test @ GIF no effect seen

Monitoring, Calibration

- Currents, Noise rates, cosmic response on going...
- ▶ Preparation of radioactive gas solution 83 Kr ($\tau_{\frac{1}{2}}$ = 1.85h) to X-check gas distribution solution.
 - Use of Calibration: for punctual calibration might be tricky for security reasons.

Scalable technical solutions:

Power & Heat reduction

- Power pulsing test done in H2 3T field: successful
- ► Power pulsing on m³ being prepared w & w/ B field
 - ◆ H2 magnet can host ~30 chambers
- Low volume interface and large surface
 - ▶ 3mm thin sensors + 3mm readout elect. with low Xtalk ✓
 - ▶ 1×1 m² continuous sensors with 1 side readout
 - ◆ Experience gained during building of m³
 - ◆ to be extended to 1×3-4m

Data reduction

- ► Included 0 suppr. per ASIC; HardRoc3 will include 0-suppr per cell.
- ► As of today: data volume is noise driven → to be improved per cell gain adj^t
- Services & supplies:
 - ► Gas system with recycling : large RPC systems ⊂ CERN expertise {e.g. CMS, Atlas}

Services

Services : Barrel

- Cooling for Dif : Blue / Red
 2 loops by module
 Ø14 for principal
 Ø4 for distribution alternative
- Gaz For GRPC : green / pink
 2 loops by module
 Ø14 for principal
 Ø4 for distribution alternative
- High Tension : Brown Ø14 for supply
- Data acquisition : Beige Ø14 for collecting

Issues: 8 zones 168 x 47

Same work done for endcaps.

Open R&D Issues

- Larger ASUs & chambers:
 - ▶ No foreseen pbm for large RPC: extrapolation $1 \rightarrow 3m$
 - ► I2C solution well advanced for HardRoc3 solution for long (3m) slabs.
 - to be tested ≤ 2013

Costs

- No change since Lol → stays cheap!
 - Driven (excl. Stainless steel) by readout:
 - VFE elec. (8,5M€),
 - ASU (4,4M€),
 - readout elec (2,5M€)
 - ► RPC (1,3M€)

[numbers for 71M channels, 48 layers, 1cm² cells, 64 modules]

Mounting

Procedure discussed during ILD integration meeting (talk from JC lanigro)
 Much progress in deformation (from own weight & ecal), mounting, services

http://ilcagenda.linearcollider.org/getFile.py/access?contribId=5&sessionId=4&resId=0&materialId=slides&confId=5498

Barrel design

Max deformation: 0.34 mm for position around 6h, 2–10h

Temps: 1

(Max deformation: 0.45 mm for position around 8-4h for support @ 4 & 8h)

Stainless steel 1 wheel (8 mod.) 5 wheels
Weight (t): 88 t 440 t

Detectors W. (t): 36.8 t 184 t

Total Weight (t): 124.8 t **624 t**

Wheel Max deformation: 0.34 mm - 0.09 mm relative zone

Module Max deformation: 0.07 mm

Directionnal deformation axis Z (// gravity) (mm)

Barrel support

Need to reduce 2 small chambers to integrate services

Gravity 1/2 wheel and Detectors mass

Directionnal deformation axis Z (// gravity) (mm)

ECAL & TPC impact

ECAL Loads on points

DHCAL with 8 x ECAL modules (8x2.5 t)
And TPC (4t)

Deformation DHCAL + ECAL + TPC : +0.06 mm % DHCAL

Note: Deformation + ECAL: +0.9 mm % DHCAL if ECAL load on lines

Barrel Building

Scenario 1: Screwing method

- 1 wheel side put on a structure
- Screwing of absorbers as m3 prototype (Ciemat)
- 1 wheel screwed on the assembly

Scenario 2: Welding Method

- 8 Modules assembling for making a wheel on specific structure
- GRPC insertion vertically all around the wheel with tool
- Services installation

«à la H1»

- Wheels with GRPC put one by one on the structure
- Rails on the structure for translation

Endcaps & Rings

2 endcaps + 2 rings

Material: stainless steel

One endcap made of 4 modules

Endcap Weight: 200 t

Detectors weight: 90 t

Total weight: 290 t

Max deformation: 0.5 mm

Ring weight = 18.4 t

1704

3153

3655

933

750

750

2218

493

Module weight = 2.3 t

Conclusion

- Most of ILD requirements addressed by the prototype
 - ► One sided controlled & readout, large & thin chambers
 - Large number of sensor production
- Arriving at the end of a long commissioning phase
 - ► m³ prototype finished last June
 - Started to accumulated large sample of cosmics
 - Results of next TB eagerly waited
- Analysis will require more efforts
 - Simulation being finalised (digitisations, model)
 - ► Innovative methods → reference numbers
- R&D on remaining points started
 - Mechanics behaviour & building in ILD
 - ► 1×3 m³ chambers building and readout