T3B Standalone Analysis

Calibration, Time Profile, Steel/Tungsten Comparison

Calice collaboration meeting- March 6th 2012 - Shinshu, Japan

Christian Soldner Max-Planck-Institute for Physics

- Introduction: CALICE and T3B
- Calibration to the MIP scale
 →Time of First Hit Analysis
- Afterpulsing Study
 →Time of Hit Analysis
- Summary and Outlook

THE T3B EXPERIMENT

The T3B Experiment

What is T3B?

- One row of 15 scintillator tiles
- Tile dimensions: 3 x 3 x 0.5 cm³
- Light Readout by SiPMs: MPPC-50P
- Data Acquisition: 4 fast USB Oscilloscopes
- Setup optimized to observe the time development of hadron showers

435 mm

1000 mm

CALICE:

- + 3D reconstruction of hadronic shower shapes
- No timing information on the showers \rightarrow (s)T3B

Tile geometry optimized for direct coupling

1 Temperature Sensor PT1000 for each T3B cell

The T3B Experiment within the CALICE Calorimeters

Run Periods: PS: Nov 2010 2-300GeV **Energy Range: Trigger:** Shower Depth: Total Had. Events: 27 Million

T3B Layer

Tungsten AHCAL

SPS: June/July/Sept 2011 **CALICE** Synchronous $\sim 3\lambda_{\rm I}$ (PS), $\sim 5\lambda_{\rm I}$ (SPS)

CALICE AHCAL

Run Periods: Energy Range: **Trigger:** Shower Depth: Total Had. Events: 5 Million

SPS: October 2011 40-180GeV **T3B Standalone** $\sim 6 \lambda_{\rm r}$

<u>The T3B Experiment</u> within the CALICE Calorimeters

CALIBRATION TO THE MIP SCALE

Sr90 Data

During the Test Beam T3B monitors the SiPM Gain continuously

→ This data can be used to calibrate energy depositions to the MIP Scale Assumption: The MIP MPV depends in first order only(!) on the Gain

Offline Calibration Setup:

Consecutive calibration of all T3B cells individually

→ Use T3B DAQ: Acquire Sr90 and SiPM gain data at the same time

The Time Integration Window

The MPV is very sensitive on the Time Integration Window

- → Dominant effect: SiPM Afterpulsing
 - Separate afterpulsing from energy depositions
 - Study the effect of afterpulsing

The Time Integration Window

The MPV is very sensitive on the Time Integration Window

- → Dominant effect: SiPM Afterpulsing
 - Separate afterpulsing from energy depositions
 - Study the effect of afterpulsing

The Time Integration Window

The MPV is very sensitive on the Time Integration Window

- → Dominant effect: SiPM Afterpulsing
 - Separate afterpulsing from energy depositions
 - Study the effect of afterpulsing

The Effect of Afterpulsing

Bias Voltage Scan for one T3B "Master Tile" One Measurement for all other T3B tiles

Time Window	MPV-Gain dependence	
Short (~10 ns)	Linear (no AP)	
Long (~100 ns)	Quadratic (with AP)	

The Effect of Afterpulsing

Obtain a dictionary:

Determine live SiPM Gain from testbeam data

Select MPV-Gain dependence for distinct time integration window

Obtain a dictionary:

Determine live SiPM Gain from testbeam data

Select MPV-Gain dependence for distinct time integration window

Obtain a dictionary:

Determine live SiPM Gain from testbeam data

Select MPV-Gain dependence for distinct time integration window

Obtain a dictionary:

Determine live SiPM Gain from testbeam data

Select MPV-Gain dependence for distinct time integration window

Principle: Muon Data

During the commissioning of the SDHCAL we could take an large amount of muon data:

- 14 mio Muon Events
- 40 hours without interruption
- Day-night-cycle Temperature Range: ~25.5C to 27.5C
- → Enough to extract the Mip MPV-Temperature dependence
- → Then: Apply correction factor from Sr90 Data to eliminate the dependence (remember: We assume the MPV depends in first order only on the SiPM gain)

Verification of the Calibration

Principle: Muon Data

Corrected MPV-Temperature dependence

Calibration results in efficient elimination of the dependence

Note (TilePosition 0, analogous for other tiles):

Corrected MPV values at ~16.5 p.e., not at the 20 p.e. we corrected to.

Interpretation: 0.82 is the Sr90 $\leftarrow \rightarrow$ Muon MPV

conversion factor

Matches simulations \rightarrow Experimental proof

	T3B Tile	MPV Drop	Slope
	Center	-2.9 %/K	-0.5 p.e./K
	Center corr.	-0.05 %/K	-0.008 p.e./K

TIME OF FIRST HIT

<u>Analysis:</u>

- Consider a hit if > 8 p.e. are deposited within 9.6 ns (basically AP free!)
- Take the time of the second fired SiPM Pixel as the TofH
- (reduced bias through thermal darkrate \rightarrow on average 1 pixel per waveform of 2.4 microsec)

<u>Analysis:</u>

- Consider a hit if > 8 p.e. are deposited within 9.6 ns (basically AP free!)
- Take the time of the second fired SiPM Pixel as the TofH
- (reduced bias through thermal darkrate \rightarrow on average 1 pixel per waveform of 2.4 microsec)

Run selection:

- Choose runs @ 60GeV, 80GeV and 180GeV for Tungsten, Steel and Muon data
 - All runs have > 1mio Events (Tu @ 60, 80GeV ~4mio Ev, Steel @ 60, 80GeV ~2mio Ev)
 - All runs for one energy from same testbeam period (no mixing)
 - Quality of all runs checked with CALICE and T3B run log
- Note: T3B after 5 lambda for Tu, but after ~6 lambda for Steel data
- Slightly increased overall bias voltage for Tu compared to Steel data (200mV) We present work in progress → all plots preliminary

Analysis:

- Consider a hit if > 8 p.e. are deposited within 9.6 ns (basically AP free!)
- Take the time of the second fired SiPM Pixel as the TofH
- (reduced bias through thermal darkrate \rightarrow on average 1 pixel per waveform of 2.4 microsec)

Analysis:

- Consider a hit if > 8 p.e. are deposited within 9.6 ns (basically AP free!)
- Take the time of the second fired SiPM Pixel as the TofH
- (reduced bias through thermal darkrate \rightarrow on average 1 pixel per waveform of 2.4 microsec)
- Sum the number of pixels fired within the identified hit
 - ightarrow Calibrate to the MIP scale

Analysis:

- Consider a hit if > 8 p.e. are deposited within 9.6 ns (basically AP free!)
- Take the time of the second fired SiPM Pixel as the TofH
- (reduced bias through thermal darkrate \rightarrow on average 1 pixel per waveform of 2.4 microsec)
- Sum the number of pixels fired within the identified hit
 - ightarrow Calibrate to the MIP scale

AFTERPULSING ANALYSIS

Dedicated Afterpulsing Runs:

- Taken in May 2011 with all 15 T3B tiles \rightarrow No SPS beam available at that time
- Record only SiPM Darkrate \rightarrow higher pixel counts due to crosstalk (higher counts less likely)
- Threshold scan: 5 runs with 400k Events @ 0.5, 1.5, 2.5, 3.5 and 4.5 p.e. threshold

+ 1 random trigger run (for pedestal substraction)

Dedicated Afterpulsing Runs:

- Taken in May 2011 with all 15 T3B tiles \rightarrow No SPS beam available at that time
- Record only SiPM Darkrate \rightarrow higher pixel counts due to crosstalk (higher counts less likely)
- Threshold scan: 5 runs with 400k Events @ 0.5, 1.5, 2.5, 3.5 and 4.5 p.e. threshold

+ 1 random trigger run (for pedestal substraction)

Criterion to accept waveform for analysis:

Demand exactly N p.e. within the acceptance range of +-3.2ns around the trigger time for the N p.e. threshold run.

e.g.: Run with threshold at 3.5 p.e. \rightarrow demand exactly 4 p.e. within 400ns +- 3.2ns

Procedure to extract the average SiPM afterpulsing per fired pixel:

Fill the time of each firing pixel into one histogram for all selected waveforms → Normalize to the number of selected waveforms

Procedure to extract the average SiPM afterpulsing per fired pixel:

Fill the time of each firing pixel into one histogram for all selected waveforms

- → Normalize to the number of selected waveforms
- ightarrow AP distribution independent of the number of fired pixels ightarrow scale

Procedure to extract the average SiPM afterpulsing per fired pixel:

- Fill the time of each firing pixel into one histogram for all selected waveforms
- \rightarrow Normalize to the number of selected waveforms
- ightarrow AP distribution independent of the number of fired pixels ightarrow scale
- \rightarrow Increase the statistics by averaging binwise

Procedure to extract the average SiPM afterpulsing per fired pixel:

AP distribution is best fit by function:

Afterpulsing Analysis

Procedure to extract the average SiPM afterpulsing per fired pixel: AP distribution is best fit by function: $f(t)_{AP} = (1 - e^{-\frac{(t-t_0)}{\tau_{rec}}}) \bullet (a \cdot e^{-\frac{t}{\tau_1}} + b \cdot e^{-\frac{t}{\tau_2}} + c \cdot e^{-\frac{t}{\tau_3}})$

 \rightarrow Obtain a stable fit to the AP distribution for all T3B tiles \rightarrow use as template to correct for AP

Procedure to extract the average SiPM afterpulsing per fired pixel: AP distribution is best fit by function: $f(t)_{AP} = (1 - e^{-\frac{(t-t_0)}{\tau_{rec}}}) \bullet (a \cdot e^{-\frac{t}{\tau_1}} + b \cdot e^{-\frac{t}{\tau_2}} + c \cdot e^{-\frac{t}{\tau_3}})$

 \rightarrow Obtain a stable fit to the AP distribution for all T3B tiles \rightarrow use as template to correct for AP

Procedure to extract the average SiPM afterpulsing per fired pixel: AP distribution is best fit by function: $-\frac{(t-t_0)}{2}$

$$f(t)_{AP} = (1 - e^{-\frac{\tau_{rec}}{\tau_{rec}}}) \bullet (a \cdot e^{-\frac{\tau_{1}}{\tau_{1}}} + b \cdot e^{-\frac{\tau_{2}}{\tau_{2}}} + c \cdot e^{-\frac{\tau_{3}}{\tau_{3}}})$$

- \rightarrow Obtain a stable fit to the AP distribution for all T3B tiles \rightarrow use as template to correct for AP
- \rightarrow Attempt to extract the time constants of the AP distribution

TIME OF HIT ANALYSIS

Analysis Criteria:

- Events Rejected for analysis:
 - Overshoots of vertical range of T3B Oscilloscopes (400mV)
 - Events without or with multiple particles (scintillator coincidence signal)
 - Events with < 15 p.e. in the whole acquisition window of 2.4 microseconds

Analysis Steps (All plots for Hadron Data, 60GeV, Tungsten, 4mio Events):

Analysis Steps (All plots for Hadron Data, 60GeV, Tungsten, 4mio Events):

Analysis Steps (All plots for Hadron Data, 60GeV, Tungsten, 4mio Events):

Analysis Steps (All plots for Hadron Data, 60GeV, Tungsten, 4mio Events):

- Fill the time of every single fired pixel into one timing histogram (per E and tile)
- Match different run periods → Pedestal sub., Renormalization, time shift...

- Fill the time of every single fired pixel into one timing histogram (per E and tile)
- Match different run periods → Pedestal sub., Renormalization, time shift...
- Correct Afterpulsing \rightarrow substract tile corresp. AP distribution for every fired pixel

Analysis Steps (All plots for Hadron Data, 60GeV, Tungsten, 4mio Events):

Muon Data does not drop to zero after AP correction:

- Additional long time components: Mirror Foil, long time constant of scintillator?
- AP behavour must be adjusted to current SiPM gain (T, V(bias))
- ightarrow Contributions should be in Hadron AND Muon data identially
- → Comparison possible

Analysis Steps (All plots for Hadron Data, 60GeV, Tungsten, 4mio Events):

- Fill the time of every single fired pixel into one timing histogram (per E and tile)
- Match different run periods \rightarrow Pedestal sub., Renormalization, time shift...
- Correct Afterpulsing → substract tile corresp. AP distribution for every fired pixel
- Use only muon data of central tile due to high statistics (when necessary)

http://www.mpp.mpg.de/~soldner/Shinshu2012/SummedTimeOf1pe.gif

- Fill the time of every single fired pixel into one timing histogram (per E and tile)
- Match different run periods → Pedestal sub., Renormalization, time shift...
- Correct Afterpulsing → substract tile corresp. AP distribution for every fired pixel
- Use only muon data of central tile due to high statistics (when necessary)

Analysis Steps (All plots for Hadron Data, 60GeV, Tungsten, 4mio Events):

- Fill the time of every single fired pixel into one timing histogram (per E and tile)
- Match different run periods \rightarrow Pedestal sub., Renormalization, time shift...
- Correct Afterpulsing → substract tile corresp. AP distribution for every fired pixel
- Use only muon data of central tile due to high statistics (when necessary)

http://www.mpp.mpg.de/~soldner/Shinshu2012/SummedTimeOf1pe-EnergyScan.gif

- Which fraction of the total Energy is deposited at which time?
 - Tilewise
 - T3B Overall

- Which fraction of the total Energy is deposited at which time?
 - Tilewise
 - T3B Overall

- Which fraction of the total Energy is deposited at which time?
 - Tilewise
 - T3B Overall

Analysis Steps (All plots for Hadron Data, 60GeV, Tungsten, 4mio Events):

- Which fraction of the total Energy is deposited at which time?
 - Tilewise

T3B Overall

- Which fraction of the total Energy is deposited at which time?
 - Tilewise
 - T3B Overall

- Discrepancies due to:
- Integrating over only a small strip instead of whole shower?
- Position behind the
 HCAL? → Answer
 through Calice-T3B
 sync. Information
- Missing correction factors (e.g. Overshoot, Saturation correction...)

SUMMARY AND OUTLOOK

Summary and Outlook

Summary:

We presented results on the time development of hadronic showers

Mean time of first hit:

- We see significant differences in the lateral shower timing between Tu and Steel, but no differences for different energies
- Calibration to the MIP scale allows us to quantify late energy depositions
- Late (first) energy depositions are small for Steel but can be high for Tungsten

Mean time of Hit:

- Device specific templates could be used to correct for SiPM afterpulsing
- We see significant differences in the lateral shower timing between Tu and Steel, but no differences for different energies
- The timing of the fraction of total energy deposited within the T3B strip shows differences wrt. the values in the CLIC CDR

Summary and Outlook

Outlook:

Geant4: Need extensive simulation study to compare to data results and identify discrepancies

Calibration:

- Implement Afterpulsing correction depending on SiPM gain (Overvoltage, Temperature)
- Use synchronization information to clean data from punch throughs and muon contamination

Now pass to Lars with his successful T3B-Calice synchronization studies

BACKUP

Fig. 1. Dependence of the dark noise rate, cross-talk probabilities and after-pulsing parameters on over-voltage and temperature, measured by triggering on thermally generated pulses

trshare.triumf.ca/~fretiere/**T2K**/Talk/NDIP/FRetiere.ps

Sr90 Data

→ This data can be used to calibrate energy depositions to the MIP Scale
 Assumption: The MIP MPV depends in first order only(!) on the Gain

Sr90 Data

- During the Test Beam T3B monitors the SiPM Gain continuously
- → This data can be used to calibrate energy depositions to the MIP Scale Assumption: The MIP MPV depends in first order only(!) on the Gain

Offline Calibration Setup:

- Sr90 Source with end point energy of 2.27MeV
- Coincidence trigger to ensure penetration of tile under study
- Consecutive calibration of all T3B cells individually
- Use T3B DAQ: Acquire Sr90 and SiPM gain data at the same time
- Use climate chamber to ensure temperature stability

⁹⁰Sr Source

Sr90 Data

- During the Test Beam T3B monitors the SiPM Gain continuously
- → This data can be used to calibrate energy depositions to the MIP Scale Assumption: The MIP MPV depends in first order only(!) on the Gain

Offline Calibration Setup:

- Sr90 Source with end point energy of 2.27MeV
- Coincidence trigger to ensure penetration of tile under study
- Consecutive calibration of all T3B cells individually
- Use T3B DAQ: Acquire Sr90 and SiPM gain data at the same time
- Use climate chamber to ensure temperature stability

Note: Electrons are no perfect MIPs \rightarrow need scale factor

GEANT4 Simulation: MPV (mu) = MPV(e)*0.825

Simultaneous extraction of SiPM Gain and most probable value of energy deposition of Sr90 electrons

The MPV is very sensitive on the Time Integration Window

- → Dominant effect: SiPM Afterpulsing
 - Separate afterpulsing from energy depositions
 - Study the effect of afterpulsing

The MPV is very sensitive on the Time Integration Window

- → Dominant effect: SiPM Afterpulsing
 - Separate afterpulsing from energy depositions
 - Study the effect of afterpulsing

The MPV is very sensitive on the Time Integration Window

- → Dominant effect: SiPM Afterpulsing
 - Separate afterpulsing from energy depositions
 - Study the effect of afterpulsing

The MPV is very sensitive on the Time Integration Window

→ Dominant effect: SiPM Afterpulsing

- Separate afterpulsing from energy depositions
- Study the effect of afterpulsing

The Effect of Afterpulsing

The Effect of Afterpulsing

The Effect of Afterpulsing

The Effect of Afterpulsing

Obtain a dictionary:

Determine live SiPM Gain from testbeam data

Select MPV-Gain dependence for distinct time integration window

Obtain a dictionary:

Determine live SiPM Gain from testbeam data

Select MPV-Gain dependence for distinct time integration window

Obtain a dictionary:

Determine live SiPM Gain from testbeam data

Select MPV-Gain dependence for distinct time integration window

Obtain a dictionary:

Determine live SiPM Gain from testbeam data

Select MPV-Gain dependence for distinct time integration window

VERIFY CALIBRATION PRINCIPLE: TESTBEAM MUON DATA

Principle: Muon Data

During the commissioning of the SDHCAL we could take an excessive amount of muon data:

- 14 mio Muon Events
- 40 hours without interruption
- Day-night-cycle Temperature Range: ~25.5C to 27.5C
- → Enough to extract the Mip MPV-Temperature dependence
- → Then: Apply correction factor from Sr90 Data to eliminate the dependence (remember: We assume the MPV depends in first order only on the SiPM gain)

Verification of the Calibration

Principle: Muon Data

- T3B tiles hit in a small fraction of triggers
 → Determine MIP MPV every 200k events
- Time window of 9.6ns selected

• Time window of 9.6ns

Time window of 9.6ns

٠

T3B Tile	MPV Drop	Slope
Center	-2.9 %/K	-0.5 p.e./K
Center + 1	-3.0 %/K	-0.48 p.e./K

Verification of the Calibration

Principle: Muon Data

Extracted MPV-Temperature dependence
 Time integration window: 9.6 ns - 192 ns
 → Lower Temperature equivalent to higher gain
 → As before: Results in higher Afterpulsing and Crosstalk Probability
 Linearity due to low T-Range (2C)!?

9.600000 ; -0.025680 19.200000 ; -0.073377

57.600000 ; -0.021153

76.800000 ; 0.003104 86.400000 ;

105.600000 ; 0.006223

115.200000 ; 0.013547 124.800000 ; 0.006016 134.400000 ; 0.031616

144.000000 ; 0.044222 153.600000 ; 0.029342 163.200000 : 0.024105

172.800000 ; 0.005804 182.400000 ; 0.029401

192.000000 ; 0.038111

30

-0.051413

-0.034544

-0.022324

-0.020850

-0.003405

0.005223

28.800000 ;

38.400000 ;

48.000000 ;

67.200000 ;

96.000000 ;

ROADMAP

<u>Roadmap:</u>

Missing Calibration Steps

TBB XI K

Time [sek

SCHE UNIVA

- <u>SiPM Saturation correction:</u> Very promising results from Marco with Wuppertal LED board and T3B tiles
- <u>Correction for Afterpulsing:</u>

→ Need a dictionary: Which pulse height causes on average which afterpulsing contribution at a certain time after the initial pulse?
 → Promising results by Simon

→ Promising results by Simon (also correction for darkrate)

Clipping Correction:

Waveform decomposition can only work up to +-200mV range with an 8bit ADC

- \rightarrow Higher energy depositions clipped
- → Original waveform probably recoverable from the signal shape

<u>Roadmap:</u> <u>Run Quality Checks</u>

<u>T3B is a very high statistics experiment \rightarrow need to concatenate all Runs at one energy</u>

Processing power is no issue: Analyze ~ 15min/million events on a standard CPU

Developing procedure to identify suboptimal run conditions:

- CALICE Runlog \rightarrow by eye \otimes
- Use Particle ID (from Cerenkovs), Beam profile
 - \rightarrow needs T3B-Calice synchronization for most of the data \rightarrow Lars ongoing...
- T3B Hardware (e.g. pedestal jumps...) → automated "Calibration Quality Check" exists

- Shower timing vs. particle energy
- Longitudinal timing of hadron showers

There is still big potential in the T3B data \rightarrow we look forward to a successful year 2012