Measurement of Basic Characteristics of Si-pad for ILD ECAL

Oishi Kou Kyushu University March 6, 2012 @ Shinshu University, Nagano

Contents

- Motivation
- Setup
- Results
 - Temperature dependence
 - Humidity dependence
 - Radiation hardness to γ -ray
- Summary
- Prospects

Motivation

- The Si-pad would be the best for PFA Calorimetry for Linear Collider Experiments.
 - Therefore the study of the Si-pad is important.
- We started the Si-pad study.
 - Until now French team has been working.
 - Kyushu University is becoming a new core of the Sipad study with the strong connection with the French team.
- We are setting up a test bench for basic measurements (I-V curve, etc.) in Kyushu University.

All-pixel currents are ganged by a copper plate.

Setup of the measurement

I-V curves are measured by controlling temperature and humidity.

Setup View

Temperature/Humidity chamber

Temperature/Humidity logger (inside & outside)

LabView on PC

keithley 6517B Source/Am meter

00000

Setup View

Temperature/Humidity chamber

NOTE: The stabilization time of the temperature is different between <u>in the box (Si-pad temperature).</u> and <u>in the chamber (logged temperature)</u>

Si-pad box

Temperature/Humidity logger (inside & outside) keithley 6517B Source/Am meter

The temperature in the box

The I-V curves were measured at least 2.5 hours after changing the temperature setting to stabilize the surface temperature.

Dark current of T323 at 200V (60%)

• The Band-gap, Eg, is nearly equal to Si's 1.11 eV.

(The temperature is measured in the chamber, not on the Si-pad surface.)

Humidity dependence

The origin of the dependence is under investigation.

Some bad reproducibility

Some strange behavior (reproducibility is not good) 12

Temperature/Humidity dependence

Bad reproducibility is included.

Each value is the average of sequential measurements under the corresponding condition.

Study of radiation hardness

@ γ-ray irradiation institute, Kyushu University.

Result

Dark current of T323 (200V, 20deg)

- The dark current actually increases after exposure.
- 100Gy corresponds to more than ~million years for ILC operation.
- The effect is small (~×1.5). -> GOOD hardness.

Summary

- We have been setting up a system to measure basic properties of the Si-pad sensors.
 - The chamber can control temperature/humidity.
 - Temperature/humidity logging is complete.
 - Several <u>automatic</u> measurements by LabView are completed.
 - Bias voltage control.
 - Current monitoring and recording.
- We have measured.
 - Temperature dependence. (looks good)
 - Humidity dependence. (now under investigation)
 - Radiation hardness. (good hardness)

Prospects

- Measurements of basic properties
 - Capacitance
 - Other samples with the same way mentioned above.
 Each model's pixel size = 10mm x 10mm and 5mm x 5mm.
- Improvements of the system
 - Temperature and Humidity monitoring
 - Thermocouple to measure the surface temperature
 - Improvement of humidity monitoring is to be considered...
 - PC control of the chamber for complete automatic system.
 - RS-485 cable is to be introduced for the connection.
 - To be controlled by LabView.

Prospects

- Measurements of basic properties
 - Capacitance
 - Other samples with the same way mentioned above.
 Each model's pixel size = 10mm x 10mm and 5mm x 5mm.
- Improvements of the system
 - Temperature and Humidity monitoring
 - Thermocouple to measure the surface temperature
 - Improvement of humidity monitoring is to be considered...
 - PC control of the chamber for complete automatic system.
 - RS-485 cable is to be introduced for the connection.
 - To be controlled by LabView.

The improved system

A thermocouple is installed into the box to directly monitor the temperature of Si-pad.

Controlled by LabView

Prospects

- Measurements of basic properties
 - Capacitance
 - Other samples with the same way mentioned above.
 Each model's pixel size = 10mm x 10mm and 5mm x 5mm.
- Improvements of the system
 - Temperature and Humidity monitoring
 - Thermocouple to measure the surface temperature
 - Improvement of humidity monitoring is to be considered...
 - PC control of the chamber for complete automatic system.
 - RS-485 cable is to be introduced for the connection.
 - To be controlled by LabView.

Setup View

Temperature/Humidity chame A thermocouple is installed

Prospects

- Measurements of basic properties
 - Capacitance
 - Other samples with the same way mentioned above.
 Each model's pixel size = 10mm x 10mm and 5mm x 5mm.
- Improvements of the system
 - Temperature and Humidity monitoring
 - Thermocouple to measure the surface temperature
 - Improvement of humidity monitoring is to be considered...
 - PC control of the chamber for complete automatic system.
 - RS-485 cable is to be introduced for the connection.
 - To be controlled by LabView.

Measurement of Basic Characteristics of Si-pad for ILD ECAL

Oishi Kou Kyushu University March 6, 2012 @ Shinshu University, Nagano

Back up

Other measurement samples

Humidity dependence

Humidity dependence

