

Shower Fractal Dimensional Analysis at PFA Oriented Calorimeter

Manqi RUAN

Laboratoire Leprince-Ringuet (LLR) École polytechnique 91128, Palaiseau

Outline

- Introduction:
 - Fractal Dimension of particle shower
 - Analysis with Full Simulated data
- Fractal dimensional analysis at CALICE DHCAL data
- One step further: Fractal dimension at SDHCAL...

Summary & to do

Shower particle: to interact or not

shower ~ self similar

Measure shower Fractal Dimension (FD) at high granularity calorimeter

- Varying scale by grouping neighbouring cells
- Count Number of hits at different scale $(define\ RN_x = N_{1mm}/N_{xmm})$

Test sample: 2-40 GeV particles (e+, K_{long}, π, μ+, p) normally injected into GRPC DHCAL with 1mm cell size

Fractals in Nature

Muon (2 GeV) $Dim \sim 1$

Straight line: Dim = 1

Rectangle: Dim = 2

Shower: Self Similar

 Characteristic constant based on energy/PID:

$$FD = 1 + \left| \frac{\ln RN_a}{\ln a} \right|$$

- a: ratio between ganged cell size and initial cell size
- Initial cell size: 1mm in simulation
- Changed Cell Sizes:
 2 10, 20, 30, 50, 60,
 90, 120, 150mm.

Potential tool for PID

FD together with other info (Nhits): Clear separation at different scales

Remark: Energy dependent Cuts, easier for charged particles

	1mm	e+	μ	h	
IN	e+	998	0	2	
	μ	1	994	5	
	h	15	14	971	

10mm	e+	μ	h	
e+	1000	0	0	
μ	0	995	5	
h	17	14	969	

30mm	e+	μ	h	
e+	1000	0	0	
μ	0	996	4	
h	18	11	971	

Energy Estimation: with Naive Counting

σ/M: Large cell better at low energy & Smaller cell at high energy. Linearity: Better at 2 – 5 mm cell, strong saturation effects at larger cell... Naively: 5mm seems a nice choice (as EM & hadronic hits are compensated)...

FD for Energy Estimation

- Strong correlation at FD vs Nhit (large scale): only loose shower makes lots of hits!
- For example: compensation based on NH_30mm & FD1mm:

$$E = a * NH_30 + b * FD \sim 30\%/sqrt(E)! But...$$

- b = b(E) ~ kE. To improve track-cluster matching?
- A set of energy independent (LO) estimator: E = a' * NH_x/(1 FD*b')

Energy Estimation with FD Correction

Hand put Energy Estimator with FD: NH10/(1-0.65*FD10)

Energy resolution improved at high energy: ~ saturation effect correction

Linearity improved: close to 5mm Cell

CALICE DHCAL data

Pic Com	on/ ibine	2GeV	4GeV	8GeV	10GeV	12GeV	16GeV	20GeV	25GeV	32GeV
Ri Nun		600094 600095 600096	600086 600087 600089 600091 600092	600082 600083 600084	600097 600098	600073 600075 600076 600079 600080	600063 600067 600069	600054 600055 600058 600059 600062	600052 600049 600050 600053	600032 600034 600037 600038 600040 600043 600048
Stati	istic	48.2k	116.5k	87.7k	33.3k	103.3k	22.2k	138.3k	144.1k	112.2k

Using 2010 DHCAL test beam data: Event pre-selection: Nhits > 10 Statistic: 210k Muon (610036, 38, 39, 47, 64) + 807k Mixed

Fractal Dimension calculation: with Nhits at 20mm - 80mm (7 points)

FD @ DHCAL data

FD method, from MC:

PID: promising, with capability to tag detailed interaction information

Energy Estimation:

Charge particle: Resolution largely improved...

Neutral hadron: Slightly improve resolution/linearity

1cm cell size

FD @ DHCAL data

Nhits Vs FD @ 32GeV (600032, 34, 37, 38, 40, 43, 48)

Muon Run:
double/multiple particle events & strong
interaction in a few events
(large FD + large Nhits)

Energetic Pion Run: Clear separation between Mip, Positron and Pion

FD Vs Nhits @ all events

For all events with Nhits > 10

Muon Run: significant double event component

Mixed Run @ 2, 4GeV: Clear separation between positron and MIP component,

with significant double events

Mixed Run @ En > 4GeV: Clear separation between EM, MIP & Hadron component

FD Vs Nhits @ all events

For all events with Nhits > 10

Muon Run: significant double event component

Mixed Run @ 2, 4GeV: Clear separation between positron and MIP component,

with significant double events

Mixed Run @ En > 4GeV: Clear separation between EM, MIP & Hadron component

👺 PID with hand put cut

Beam Energy [-GeV]

FD & Typical Patterns

DHCAL Runs: pretty clean... but not completely free of noises...

Energy Response

Energy Response of Pion

Energy Response of Positron

Energy Response:

Basically agrees, especially with same pre selection Non-linear behaviour of positron and high energy pion Pion: lower response at 16GeV...

Lei's pre selection

- * Exactly 1 cluster in layer 1
- * Not more than 4 hits in layer 1
- * At least 3 layers with hits
- * No hits within 2 cm to layer edges

Track-Cluster matching (with known track E)

- FD & Nhits(large_scale) (extreme case: Num of fired layer): strong correlation holds for test beam data
- Hand put energy estimator

$$E = N*(NH_90mm + 10*E*FD)$$

Energy Resolution easily improved by a factor of 2...

The difference between naive counts is due to different cut chain

For electron/positron

- e^+ and π^+ : continuous & aligned distribution on the Nhits(large scale) FD plane (extreme case is $\pi^+ + n \rightarrow \pi^0 + p$): Estimate positron energy with same estimator as pion.
- Track-cluster matching can be improved by the use of FD, but complete performances still have to be studied 09/01/2012

Without knowing track energy

- Without knowledge on initial energy E ~ NH/(a FD): Projection from the invariance point on FD axis to Nhit axis.
- EM & Hadronic distribution has the same boundary (FD ~ contamination of EM interaction inside hadronic shower) ~ Hard limit: Measure Hadronic as precisely as EM component?

And Linearity...

 π^+/e^+ Energy Response Linearity

Charged particle: Significantly improve energy resolution & linearity (i.e, positron saturation effects corrected)

"Neutral" particle: Energy Resolution could be improved at low energy, but lose a bit the linearity... contrary to MC prediction.

FD @ SDHCAL

Objective: to find optimised threshold and energy estimator, with best linearity and resolution of particle energy

$$En = En (Resize_NH(i), FD(i), ...); i = (1), 2, 3, 4$$

To study correlations @ different thresholds (Code done)

Open questions:

Besides e/h ratio, any information else Presented by FD?

. . .

FD @ SDHCAL hits

Thresholds: 0.2, 1.0, 2.5 pC

Thresholds: 0.8, 2.2, 4.5 pC

FD of different SDHCAL hits, 40GeV π^+

FD of different SDHCAL hits, 40GeV π^+

Significantly different behaviour...

Most interesting part: Q > T3 hits - Core of EM interaction?

Summary & To do

- Fractal Dimensional: Validated @ simulation and real data
 - Roughly repeat:
 - Fermi Lab Beam contamination measurement in previous CALICE TB
 - e+ and pi energy resolution (compare to Lei's Granada slides)
 - PID: Čerenkov seems no longer needed for the prototype...
 - Energy Estimation:
 - With known track energy: resolution easily improved by a factor of 2
 - Possibility to measure hadronic shower energy as precisely as EM shower?
- To do:
 - Better understanding to FD
 - FD @ ECAL, SDHCAL, AHCAL...
 - FD Vs Geometry...
 - Note & Paper

Spare slides

Extreme Cases: Pion

- Pion: MIP, Pion decay;
- EM interaction ($\pi + n = p + \pi^0$); partially identified by interaction point tagging

Extreme Cases: Muon

Together with N_{hit} information: to identify Muon radiation & String noise...

Notes: 2, 4GeV

Nhits Vs FD @ 4GeV (600086, 87, 89, 91, 92)

Low Energy Mixed Run:
Significant Positron component
Low contamination of pion & difficult to identify... reliable MC input should help

Notes: 8, 10GeV

Nhits Vs FD @ 8GeV (600082, 83, 84)

Nhits Vs FD @ 10GeV (600097, 98)

From 8GeV: Start to have good μ - π separation. Could be improved with more dedicated FD definition

Notes: 12, 16GeV

Nhits Vs FD @ 12GeV (600073, 75, 76, 79, 80)

Nhits Vs FD @ 16GeV (600063, 67, 69)

Notes: 20, 25GeV

Nhits Vs FD @ 20GeV (600054, 55, 57, 58, 59, 62)

Nhits Vs FD @ 25GeV (600049, 50, 52, 53)

Nhits Response: Positron

Nhits Response: Pion

Nhits response: Muon

FD Vs Energy: Positron

FD Vs Energy: Pion

Pion Energy Measurement: with known track energy

Positron Energy Measurement: with known track energy

