Track Segment Analysis update

<u>L. Weuste</u> Max Planck Institut für Physik Excellence Cluster "Universe" München

CALICE Collaboration Meeting Shinshu University - March 2012

Nearest Neighbour algorithm Needs I hit per layer

Tracking in the AHCal

- Based on layer isolated hits,
 i.e. hits with no adjacent hits in the same layer
- Plan: Publication (JINST?)

Already presented in CAN-022

- Rewrite of code
- No fundamental changes
- Usage of official geometry classes
- Made algorithm more general
 - Completely recursive implementation
 - With simplification: No need for special treatment of certain geometric cases
 - Improving identification of inclined tracks with gaps

Tracking in the AHCal

- Already presented in CAN-022
- Nearest Neighbour algorithm
- Needs I hit per layer
- Based on layer isolated hits,
 i.e. hits with no adjacent hits in the same layer
- Plan: Publication (JINST?)
- Rewrite of code
- No fundamental changes
- Usage of official geometry classes
- Made algorithm more general
 - Completely recursive implementation
 - With simplification: No need for special treatment of certain geometric cases
 - Improving identification of inclined tracks with gaps

Tracking in the AHCal

- Already presented in CAN-022
- Nearest Neighbour algorithm
- Needs I hit per layer
- Based on layer isolated hits,
 i.e. hits with no adjacent hits in the same layer
- Plan: Publication (JINST?)
- Rewrite of code
- No fundamental changes
- Usage of official geometry classes
- Made algorithm more general
 - Completely recursive implementation
 - With simplification: No need for special treatment of certain geometric cases
 - Improving identification of inclined tracks with gaps

Example events

Example events

$$l(x) = l_0 \cdot \exp\left(-\frac{x}{\lambda_{\text{track}}}\right)$$

Track length 1

- $\lambda_{\text{track}} \equiv$ slope of exponential fit ("typical track length")

 $l(x) = l_0 \cdot \exp(-\frac{x}{\lambda_{\text{track}}})$

Track length 1

- $\lambda_{\text{track}} \equiv$ slope of exponential fit ("typical track length")

 $l(x) = l_0 \cdot \exp(-\frac{x}{\lambda_{\text{track}}})$

Track length 1

- $\lambda_{\text{track}} \equiv$ slope of exponential fit ("typical track length")

 $l(x) = l_0 \cdot \exp(-\frac{x}{\lambda_{\text{track}}})$

Efficiency of track finder \neq 100% ==> $\lambda_{track} \neq \lambda$

- Toy MC to show effect
 - Simulate I 50k events
 - 38 layers
 - $-\lambda$ = 8.84cm
 - For each layer: assume certain probability to stop tracking
 - blue: true track length
 - red: track length as identified

Track finding: Imperfections

Nearest Neigbour Algorithm

- No usage of physical flight trajectory
- Noise hits influence track direction
- No/Small influence on MC <=> Data comparison
- Possible solutions:
- Track Fitting
 - not easy (e.g.: tile size is not ,,error")
 - cannot fix all track errors
- Hough Transform based filtering
 - Using Fast Hough Trafo with variable binsize

Track finding: Imperfections

Nearest Neigbour Algorithm

- No usage of physical flight trajectory
- Noise hits influence track direction
- No/Small influence on MC <=> Data comparison
- Possible solutions:
- Track Fitting
 - not easy (e.g.: tile size is not ,,error")
 - cannot fix all track errors
- Hough Transform based filtering
 - Using Fast Hough Trafo with variable binsize

Lars Weuste (weuste@mpp.mpg.de) - MPP

Lars Weuste (weuste@mpp.mpg.de) - MPP

Hough transformation: Filtering

Hough Transformation: AHCal Hits

- Hit: cell size 3x3x0.5 cm³

- Band in hough space (neglecting thickness of 0.5cm)
- Intersection ,,point" (area) difficult to calculate analytically ==> binned hough space

Hough Transformation: Filter results

Filterung reduces noise hits (which are main reason for unphysical tracks)

Here: Barely visible (low noise runs)

Track Multiplicity

Track multiplicity <=> # Particles in hadronic shower: Correlation?

- Mokka Hack: Convert each particle in StackingAction into MCParticle
- Here: #Tracks VS # Charged Particles with E_{kin} > 500MeV (w/o e[±])
 - Correlation: ~0.4 for QGSP_BERT and FTFP_BERT (LHEP: ~0.3)

Low multiplicity limits correlation

Publication Plan

- Description of Algorithm + Track Filtering
- Track algorithm systematics
- MIP Cut
- Noise
- Data MC comparison
- physics lists (as requested by Geant4 team):
 - QGSP_BERT (old LHC production)
 - FTFP_BERT (new LHC production)
 - LHEP (to show how physics list evolved)
 - QGS_BIC (for systematic uncertainties)

Lars Weuste (weuste@mpp.mpg.de) - MPP

- Observables
 - track multiplicity
 - (typical) track length
 - track inclination

	1 <u>Preprint typeset in JINST style - HYPER VERSION</u> Draft 0.1	
	 Identification of Track Segments in Hadronic Showers in the CALICE Analog Hadron Calorimeter - Algorithm and Comparisons to Simulations 	
	Author List excluded in Draft ABSTRACT: Using the high granularity of the CALICE analog hadron calorimeter (AHCal), a tracking algorithm was developed. It is capable of finding tracks of particles that behave like Minimum Ionizing Particles (MIP) both in muon events and in hadronic showers. The algorithm and the applied filtering techniques are described. The track segments identified in hadronic events are sensitive to the spatial structure of the showers. Hence, the intrinsic properties of the tracks found are used as observables in a comparison between Monte Carlo simulation and testbeam data.	
Cat	Editorial Board: therine Adloff,Vincent Boudry,Vishnu Z	útschi

Summary

Tracking algorithm is working

New Hough Transformation based filter to reject outliers

Correlation: track mulitplicity <=> # charged particles

First draft almost complete

Backup: Tracking Algorithm

- For each isolated hit as track start:
 - Collect isolated hits in the consecutive 2 layers
 - Sort them by distance to track start
 - Search for tracks with each of these as new track start point
 - Avoid double counting of hits
 - (Here: Hit I will use Hit 2a in its track, hence there is no possibility to start an independent track from Hit 2a)
 - Merge with longest track

Backup: Tracking Algorithm

- For each isolated hit as track start:
- Collect isolated hits in the consecutive 2 layers
- Sort them by distance to track start
- Search for tracks with each of these as new track start point
 - Avoid double counting of hits
 - (Here: Hit I will use Hit 2a in its track, hence there is no possibility to start an independent track from Hit 2a)
- Merge with longest track

Backup: Tracking Algorithm

- For each isolated hit as track start:
 - Collect isolated hits in the consecutive 2 layers
 - Sort them by distance to track start
 - Search for tracks with each of these as new track start point
 - Avoid double counting of hits
 - (Here: Hit I will use Hit 2a in its track, hence there is no possibility to start an independent track from Hit 2a)

13

Merge with longest track

Track multiplicity / Track length

For Run 330325

- 25 GeV pi-
- On average: 2.01 tracks / evt
- Old tracker (different 25 GeV run):
 I.6 tracks / evt

Track segments by MIPs: Langau

Energy deposition of MIPs:

- Landau ⊗ Gauss: "Langau"
- Similar Fit like in FitMip package:
 - MPV = 1.08 GeV (all tracks)
- Energy deposition higher for inclined tracks
- MPV = 0.99 GeV (straight tracks)

Run 331333:60 GeV Pion

Track segments by MIPs: Langau

Energy deposition of MIPs:

- ─ Landau ⊗ Gauss: "Langau"
- Similar Fit like in FitMip package:
 - MPV = 1.08 GeV (all tracks)
- Energy deposition higher for inclined tracks
- MPV = 0.99 GeV (straight tracks)

Run 331333: 60 GeV Pion

Langau MPV: Track angle dependence

- Use lines limiting the bands
- Calculate intersections between all limiting lines
- Bin border = mid between 2 intersections in m (t)
- Fill bin if band traverses bin

- Use lines limiting the bands
- Calculate intersections between all limiting lines
- Bin border = mid between 2 intersections in m (t)
- Fill bin if band traverses bin

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

Point in normal space = line in Hough Space (and vice versa)

Get point with most intersections

