

Status of the AHCAL technology

Mark Terwort CALICE collaboration meeting Matsumoto, March 7th, 2012

Overview

- The AHCAL physics prototype
 - Hardware + beam tests
 - Established performance
 - Validated simulations
- Scalable technology solutions
- Mechanics and simulation
- Future R&D plans

The AHCAL physics prototype

The AHCAL physics prototype

- Constructed in 2006 and used in many successful testbeams since then
- First large scale use of SiPMs in HEP, now many other users in HEP, astrophysics, medical technology, ...
- SiPMs survived many trips with dissembly/reassembly (now: 3.5% dead channels)
 - \rightarrow No signs for aging, no increase of noise

→ Extremely robust technology

Scintillating tiles and SiPMs

- Base unit: 3x3x0.5cm³ scintillator tile with SiPM (1156 pixels), manufactured by MePhI/PULSAR, now many manufacturers (advances concerning dark rate)
- Maximum efficiency in green spectral range
 - \rightarrow Wavelength shifting fiber to collect and shift blue scintillation light

Features:

- Extremely compact, very low power consumption
- Insensitive to magnetic fields
- High gain, low operation voltage
- Prototype noise occupancy of ~10⁻⁴ no problem to achieve

How to calibrate the AHCAL

- Simple calibration procedure per cell:
 - MIP constants
 - Saturation behaviour
 - Gain (for saturation and temperature correction) and intercalibration
- Global calibration to electromagnetic
 scale, e/pi ratio for hadronic scale
- Required single cell precision for hadronic calorimeter is moderate, collective effects easy to control
 - → Go beyond this to fully understand all aspects of SiPM operation
 - → Provide excellent performance for electromagnetic showers

Temperature dependence

- Gain and MIP response are temperature dependent
 - \rightarrow Monitor temperature to correct detector response in offline analysis
 - \rightarrow Take MIP and gain runs at different temperatures
- Requires better test bench data and optimized procedures, nevertheless:

Portability of calibration constants

How to calibrate LC detector with MIPs?

 Can calibration constants be ported to different environmental conditions?

 \rightarrow **Yes**, if temperature and voltage corrections are applied

- CERN 2006 calibration has been applied successfully to FNAL 2009 data
- Identified track segments can be used for MIP calibration

→ All aspects of calibration under control

Response non-uniformities

How uniform is the tile response?

- Tiles with fiber (2nd generation 3mm tile):
 - Slightly reduced response in area of fiber and SiPM area
- Tiles without fiber (tile from UHH, MPI design):
 - Reduced response in dimple and SiPM area

The tile edges

• Gradient of response at tile edges:

 \rightarrow Observation consistent with known angular distribution of electrons from ^{90}Sr source

 \rightarrow No indication of sizeable edge non-uniformities beyond assembly tolerances and matting

- ⁹⁰Sr tests at ITEP with two adjacent tiles
 - Overall efficiency loss ~2% due to edges
 - Cross talk through matted side and over reflective covering

Impact of non-uniformities

DESY

- Effect from non-uniformities visible in response to muons
 - \rightarrow Single particle, tiles aligned from layer to layer
- Effect is negligible for hadronic showers
 - \rightarrow Higher multiplicity, particles spread over active tile area
- Simulation in ILD with realistic gaps between tiles and HBUs
 - → Simulation model validated with electromagnetic showers

 \rightarrow No impact on energy resolution observed

Validation with electron data

 Detector performance for electrons and positrons provides a detailed validation of the simulation model of the AHCAL

 \rightarrow AHCAL geometry description, simulation and digitization in **excellent** agreement with data

Selected results from data analyses

GEANT4 - Reconstructed energy

How well can GEANT4 describe out data?

- Simulation only tuned with muon data
- Compare reconstructed energy in data with MC predictions

Longitudinal shower profile

- High granularity allows to measure shower shapes in detail
- Measurement sensitive to electromagnetic fraction of cascades

Radial shower profile

DESY

- High granularity allows to measure shower shapes in detail
- Radial profile underestimated by MC \rightarrow Doesn't affect 2 particle separation

Shower sub-structures

- High granularity also allows measurements of shower sub-structures
- Here: number of track segments

Modelled surprisingly well in new models

Energy resolution and linearity

- In spite of imaging capability: Need to measure **shower energy**
 - \rightarrow Linearity?
 - \rightarrow Energy resolution?
- Slightly different behaviour of simulations compared to data

Software compensation

- Energy dependent electromagnetic fraction requires compensation
- Local and global compensation techniques have been developed
 - → Comparable performance
- Improvement of energy resolution between 12% and 25% (depending on beam energy)
 - \rightarrow Improvement described well by simulations
 - \rightarrow Successful proof of principle in **full ILD simulations** with local SC integrated into PandoraPFA

Stochastic term improved from ~58% to ~45%

Particle Flow with test beam data

Test MC models with important particle flow analysis!

Method:

- Take 2 pion events and map them to ILD geometry
- Assume one is neutral
- Vary distance between the 2 pions and test
 how well the energy of neutral hadron is reconstructed

30 GeV charged hadron

of shower

~18 cm separation

10 GeV 'neutral' hadron

Confusion depends on radial distance between showers and their energy

 \rightarrow Good agreement between data and MC

The next generation prototype

The engineering AHCAL prototype

23/43

Development of **scalable LC detector** based on successful experience with physics prototype

Inspired by ILD, looks similar for SiD

Octagonal shape, 16 equivalent wedges, segmented in two along z

> PCB with 4 ASICs, 144 scintillator tiles, SiPM readout

Challenges:

- No spacer between layers
- Minimize dead material between wedges
- Minimize gap between barrel and endcap
 - → Integrated readout electronics

Scintillating tiles

- Signal sampled by scintillating tiles
 - \rightarrow 3x3x0.3cm³, ~2600 tiles per layer
 - \rightarrow Tiles can be cut, pins on same side _{SiP}
- Many new tiles from ITEP tested
 - \rightarrow Very good results so far
 - \rightarrow Equipment of several new HBUs
 - → Important step to multi-HBU-setup now possible

Alternative option: direct tile readout

- Commercial SiPMs (Hamamatsu MPPC, ...) have sensitivity maximum in blue spectral range
 - \rightarrow No need for wavelength shifting fiber
 - \rightarrow Reduced mechanical complexity, no alignment of SiPM
- To achieve good uniformity reduce scintillating material in front of SiPM
- ITEP can produce such tiles via injection moulding (first results promising)

→ Achieved very good results in light yield measurements (uniformity)

LED calibration systems

Wuppertal solution:

- Light directly coupled into tile by 1
 integrated LED per channel
- Light output equalization via C1 C3
- New design implemented in HBU2 and is currently tested extensively

Prague solution:

- Light coupled into tile by notched fiber
 - → First tests performed in DESY lab with new electronics and new tiles

The readout chip - SPIROC2b

Specific chip for SiPM readout:

 Input DAC for channel-wise bias adjustment (36 channels)

Designed for ILC operation:

- Power pulsing → 25µW/ch
- Dual-gain setup per channel
 - \rightarrow channel-wise amplification factor

→ Channel-gain equalization perfectly possible for ITEP tiles

- Auto-trigger mode
 - \rightarrow channel-wise adjustable threshold
- Time stamp (12-bit TDC)
- Many tests have been performed to gain profound understanding of the chip

New HCAL Base Unit (HBU2)

- 4 new HBUs in DESY lab
 - \rightarrow Successful tests of ASICs, calibration system, tiles
- 1 HBU2 connected to 2nd generation DAQ modules for first tests
 - \rightarrow Firmware under development
- 1 HBU2 in DESY test beam
- We ordered 6 new HBU2s for full slab test:
 - \rightarrow Quality of electrical signals
 - → Mechanics, temperature

 $\rightarrow DAQ$

New HCAL Base Unit (HBU2)

- 4 new HBUs in DESY lab
 - \rightarrow Successful tests of ASICs, calibration system, tiles
- 1 HBU2 connected to 2nd generation DAQ modules for first tests
 - \rightarrow Firmware under development
- 1 HBU2 in DESY test beam
- We ordered 6 new HBU2s for full slab test:
 - \rightarrow Quality of electrical signals
 - \rightarrow Mechanics, temperature

 $\rightarrow \mathsf{DAQ}$

New HCAL Base Unit (HBU2)

- 4 **new HBUs** in DESY lab
 - \rightarrow Successful tests of ASICs, calibration system, tiles
- 1 HBU2 connected to 2nd generation DAQ modules for first tests
 - \rightarrow Firmware under development
- 1 HBU2 in DESY test beam
- We ordered 6 new HBU2s for full slab test:
 - \rightarrow Quality of electrical signals
 - \rightarrow Mechanics, temperature

 $\rightarrow \mathsf{DAQ}$

- Mechanics is in place since long time
 - \rightarrow Use it to perform temperature tests
 - \rightarrow Use it for small stack

Data acquisition

Test beam – First MIP results

HBU2 in DESY test beam

- Test functionality in test beam environment
- Measure MIPs with 2 GeV electron beam

\rightarrow ~15 pixels per MIP

 Test channel-wise gain and autotrigger adjustment and **optimize MIP efficiency**

 \rightarrow Good results so far

Power pulsing

- Concept of power pulsing already tested on ASIC test bench
 - \rightarrow Working so far, but has to improve
- Need to verify power distribution and signal integrity in larger system
 - → Use multi-HBU setup (2012)
- Validate heat dissipation calculations with realistic steel plates (2012)

Shower timing measurements

- T3B measured radial development of shower in time
 - → Repeat measurement with **full layer** or even multiple layers
- ASIC measures time in auto-trigger mode relative to bunch clock

→ **Resolution:** ILC mode = **300ps**, testbeam mode = **1-2ns**

Simulation of time development

- Implementation of time information in simulation done
- Digitization is currently under development
 - \rightarrow Realistic analyses of simulation data with timing information started

→ Prepare for future 4D testbeam measurements

Mechanical concept and simulation model

Manufacturing of steel plates

- Precise measurement of large steel plates possible at DESY
- Specifications:
 - Thickness: -0.3 +1.6 mm
 - Flatness: < 10 mm over 1 m
 < 13 mm over 2 m
- Flatness achieved w/o machining with cheap production procedure and rolled steel

The AHCAL in the ILD

Full implementation of AHCAL in ILD available

- Support structures
- Front-end electronics
- Cabling
- Realistic implementation of gaps between half barrels, submodules, within modules and layers
- Installation scenario is known
- AHCAL rotation under discussion

→ High level of realism

Current simulation geometry

- Current implementation of AHCAL contains front-end electronics
 - → More realistic

Detector layers:

- 20mm steel absorbers (including cassettes)
- 3mm scintillator tiles
- Readout board with integrated ASICs
- 1.7mm air gap for connectors, solder pins ...
- Front-end electronics
 - 0.5mm steel cassette

Realistic simulation ready to be used for ILD physics analyses

Future R&D

- Re-establish performance, stability and monitoring of new prototype
 - \rightarrow More critical with auto-trigger and zero suppression
- Development of a robust and compact **power distribution system** for an LC detector
- Development of a compact data collection scheme for an LC detector
- Optimization of tile + SiPM system following industrial trends
- Establish mass production and quality assurance procedures

Shower timing and particle flow

→ Verify simulations

\rightarrow Explore timing information for particle flow reconstruction

- The AHCAL has been used successfully over many years:
 - First large-scale detector with SiPM readout
 - Large number of results, from calibration to shower studies and energy resolution
- Proof of key concepts of event reconstruction:
 - Particle flow performance validated with real data
- Path forward:
 - **Technological prototype**: first demonstration at full layer level in 2012
 - Electronics integration and 4th dimension
 - Full system in next R&D phase

Backup

SPIROC2b

Channel-gain equalization

How to set online thresholds?

- \rightarrow New tiles have gains between 500k and 2000k, but uniform light yield!
- \rightarrow Channel-wise threshold tuning?
- Channel-gain equalization with preamplifier feedback capacitors
 - \rightarrow Capacity range 25-1575fF in 25fF steps
- Normalize to e.g. 100fF measurement

- → Factor 4 gain spread possible to compensate with SPIROC2b!
- → Gain spread ~5% after equalization!

AHCAL layer – cross section

CALIB	Steering for LED calibration

CIB Central Interface Board

HBU Front-end board

Radial shower profile

DESY

- High granularity allows to measure shower shapes in detail
- Measurement sensitive to electromagnetic fraction of cascades

Compensation – MC vs data

Local compensation

Global compensation

Local:

MC describes data well

Global:

MC predicts further improvement above 40 GeV

Mechanics and simulation model

DESY

- Fully engineered design exists for ILD AHCAL
- AHCAL half barrel:
 - 16 half-octants, 40 layers (5.2λ)
 - 16 backpacks, 8 layers (5.7λ in total)
 - 32 connector bars
 - 16 back plates
 - \rightarrow fill gap between half barrels
 - \rightarrow avoid air gaps at z=0

ILD AHCAL endcap

Detailed endcap designs available

- 48 sensitive layers, 49 absorber plates
- 16 top towers, 14 bottom towers
 - \rightarrow 5-8 base boards per slab
- Front-end electronics implemented
- Installation scenario known
- Few details to be studied about supply routes and interfaces

