

Optimization studies for single tile design

E. Garutti F. Karimi S. Laurien <u>M. Ramilli</u> A. Silenzi C. Xu CALICE collaboration Meeting Matsumoto, 06/03/2012

Overview

•SiPM characterization

- → Gain
- → Breakdown voltage
- Capacitance and Current curves
- •Tiles + SiPM:
 - → Light Yield measurements
 - → light cross-talk
 - → Coatings & connectors studies
- •New setup

SiPM Characterization

 $\times 10^{3}$ e_0 Consolidated SiPM characterization protocol at UniHH: STM C Module (3x3 ් 1500 STM H Module (1x1) Excelitas SiPM Gain[# (MPPC-S10362-11-50P (1x1) •Gain PC-S10362-33-50P (3x3 •I-V curves 1000 Breakdown Voltage •C-V curves (gain measurement) Quenching Resistance measurement 500 •Dark Count Rate and Optical Cross-Talk 0.5 1.5 2.5 2 All setups are temperature monitored $\Delta U[V]$ MPPC -S10362 -33-50P C[pF] 2000 Easy performance comparison: 1000 900 DCR(Mcps) PDE $U_{pd}(V)$ 800 700 MPPC(1x1)75.5~78.5 0.1-0.4 ~32% 600 500 MPPC(3x3) 66.5~69.5 1~3 ~32% 400 STMicro 28.7~29.5 0.2~1 ~8.5% 300 Excelitas 33.5~33.7 6.3~7.3 20 60 40 0 0.9~9 MAPD ~90 U bias[V]

Gain = $(C_{depl} * \Delta V)/e^{-} = 8.6 \times 10^{5} (@ +1.5 V)$

Ketek SiPMs

Two different Ketek SiPM models under characterization (4 items per type):

Type I

- circular surface
- 1 mm diameter
- 1900 cells
- \bullet cell pitch 20 μm

Type II

- square surface
- 2.25 mm x 2.25 mm area
- 12000 cells
- \bullet cell pitch 20 μm

Gain Characterization

•Gain estimated from peak-to-peak distance obtained with multi-gaussian fit

- •Performed at different bias voltages
- Correction for breakdown voltage

I-V and Resistor measurements...

Universität Hamburg

After characterization, use Ketek SiPMs in combination with a tile

Tile+SiPM: Tiletester

Light Yield measurements

Setup for measurements of average tile Light Yield :

Sr90 source, emission mechanically collimated
Trigger: two ITEP tiles in coincidence
LED for Gain measurement

LY [pix] = (MPV [QDC] - ped[QDC])/Gain[QDC/pix]

MPV from Landau-Gaussian convolution fit

Test different combinations of: •Coatings •SiPMs

9

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

LY (Pixel)

10,4±0,4

9.3±0.4

surface

3M

a first tile had been modeled from Bicron BC-400 dimple for **direct coupling** to SiPM designed by MPI Munich coupled to Hamamatsu MPPC S10362-11-50P

SiPM

CPTA

a second tile had borders coated with aluminum evaporation

Tile

BC-400

BC-400

direct aluminum deposition shows less average LY value!

SiPM

MPPC

MPPC

surface

3M

3M

border

air

Al

border

Acid polish

The setup has been optimized with an ITEP tile (delivered at DESY in November 2011)

Tile

ITEP 1235

LY (Pixel)

15.4±0.4

Coatings

ITEP Standard tile:

Reference tile+SiPM:

... more coatings

Several complete tile coatings have been studied:

Direct deposition on tile ourface:					
Direct deposition on the surface.	SiPM	tile	borders	surface	LY (Pixel)
	MPPC	BC-400	Al	Al	~5
(from C.Soldner)	MPPC	BC-400	TiO2	TiO2	8,7
wrapping:	SiPM	tile	borders	surface	LY (Pixel)
Reference:	MPPC	BC-400	air	3M	10,4±0,4
	MPPC	BC-400	3M	3M	28,8±0,4
	MPPC	BC-400	paper	paper	19,7±0,4
With a different SiPM:	SiPM	tile	borders	surface	LY (Pixel)
	Ketek II	BC-400	3M	3M	33,7±0,4

~15 % higher LY value due to better Ketek PDE

Wrapped tiles show promising results: consistent with previous CALICE studies on coatings (e.g. Shinshu 2008 ScECAL studies, MPI Munich 2011 studies)

Next step: uniformity scan at MPI Munich Though it has extensively demonstrated that tile non-uniformity have small impact on energy reconstruction of hadronic showers (see for example F.Simon talk on AHCAL meeting @ DESY, 13 December 2011)

Aluminum

Paper

M film

TiO²paint

Tile Light Cross-Talk

cross-talk value per tile edge had been evaluated from calibration runs as $C = 4.5\% \pm 0.2\%$ for the ITEP tiles 3 cm x 3 cm x 5 mm with WLS fiber

New setup for dedicated cross-talk measurements:

- Two tiles coupled with SiPMs
- •Tile 1 directly illuminated with LED blue light delivered via fiber
- Signal from both tiles acquired
- •Light cross-talk between tiles calculated according to :
 - $C = \frac{I_2}{I_1 + 4 \cdot I_2}$

First preliminary results new ITEP 3 cm x 3 cm x 3mm tiles give us C ~ 4%

Inserting a copper strip between tiles (no light cross-talk) still C ~ 1% is measured due to back reflection of the 3M foil (greater than the entity of electronic cross-talk)

Total tile wrapping would prevent this effect!

Saturation

Perform saturation measurements with a flexible setup

Study saturation for:

- •Different SiPM models
- •Different SiPMs coupled with different tiles

Items freshly arrived at our new (almost ready) laboratories ...

•SiPM characterization:

- → Full characterization measurement of two Ketek SiPM models
- •Tile + SiPM characterization:
 - → Light Yield setup well functioning
 - → Tile Light Cross-Talk setup only preliminary results
- •Both setups actively used for coating studies:
 - Direct deposition of reflective material gave poor results
 - → Best results obtained with wrapping (due to air layer?)
 - → Next step: Characterize uniformity of total wrapping;
- New incoming saturation measurements setup

Thanks to:

- •Karsten Gadow for the tiletester setup;
- •Mark Terwort for tiletester data acquisition.

C-V curves

Gain estimation from the fully depleted capacitance value (dividing by the cell number):

$$Gain_{Typell} (@ +4V) = 7.3 \times 10^5$$

... not much consistent with previous Gain measurements

Double Trigger

