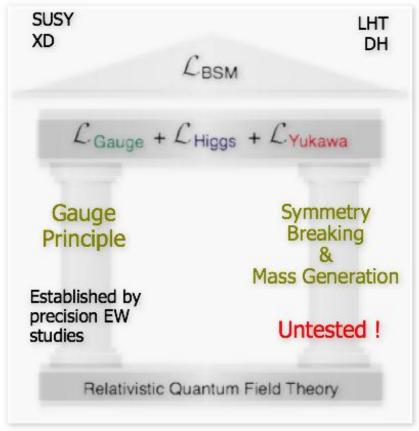
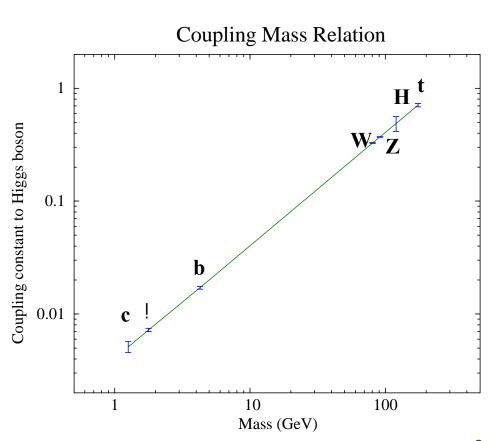
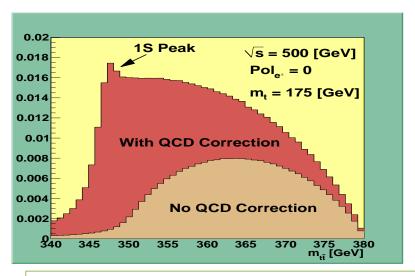
Status of tth analysis

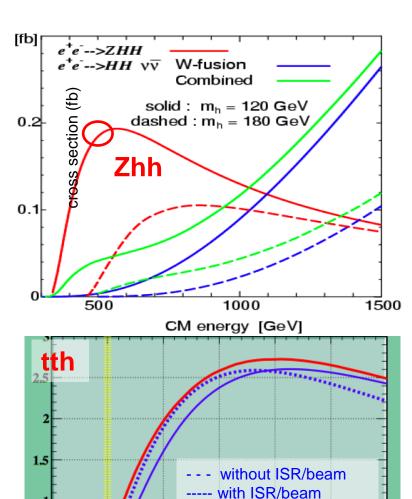

- 1. √s=500 GeV
- 2. √s=1 TeV
- 3. MC requests


R. Yonamine, **T. Tanabe**, K. Fujii T. Price, H. Tabassam, N. Watson, V. Martin

ILD Workshop, Kyushu University May 23, 2012

Main Motivations


- We must verify the origin of EWSB and the mass generation mechanism, which must be done before BSM physics can be established.
- Given the hint of a light Higgs at the LHC (we will assume mh=120 GeV), ILC becomes an ideal probe for measuring the Higgs couplings to the gauge bosons and fermions. Our focus: top Yukawa coupling.



Motivations at √s=500 GeV

- Well-known energy thresholds for ILC:
 - **250 GeV: Zh** (m_h=120 GeV)
 - 350 GeV: top pair
 - 500 GeV: Zhh & tth
- y_t measurement possible at 500 GeV due to
 QCD bound-state effects (enhancement near the production threshold)
- Fast simulation result: 10% statistical precision on y_t [Phys. Rev. D 84, 014033 (2011)]
 - Next: full simulation to increase confidence

---- with ISR/beam +

Higgs from Z

700

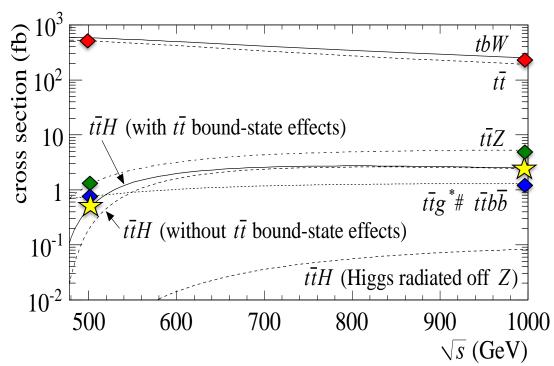
QCD bound-state effects

800

Note: ttZ is also enhanced. But ttg* is not enhanced because tt system is not a color singlet.

0.5

500


600

Signal & background

Signal:

- 6 jet + lepton mode
- 8 jets mode
- Main backgrounds:
 - ♦ ttg* → ttbb → bWbWbb
 - ♦ ttZ → ttbb → bWbWbb
 - ♦ tt → bWbW
 - off-resonant contributions important!

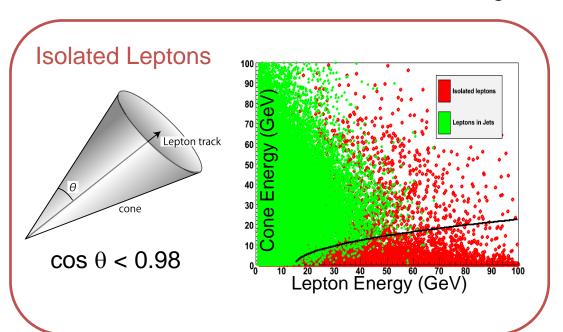
Motivations at √s=1 TeV

- Detector benchmark process for DBD
- Should be better measurement at higher energy:
 - Signal cross section increases (peaks around 800 GeV)
 - (QCD bound-state effects become negligible)
 - ttZ and ttg*→ttbb also increase but tt → bWbW decreases

Software tools

	500 GeV	1 TeV
Frank Cananatan	tth, ttZ, ttg*→	ttbb: physsim
Event Generator	tt: LOI 6f (Whizard)	STILL MISSING!
Detector Simulation	Geant4 9.3p02	Geant4 9.5
	Mokka 07-06-p02	Mokka 07-07-p06
Detector Model	ILD_00	ILD_o1_v0X
	LOI reconstruction:	ilcsoft v01-13-05:
Event Reconstruction	PandoraPFA	PandoraPFANew
	SatoruJetFinder	MarlinFastJet
	LCFIVertex	LCFIVertex

Still using old tools/samples in some places.

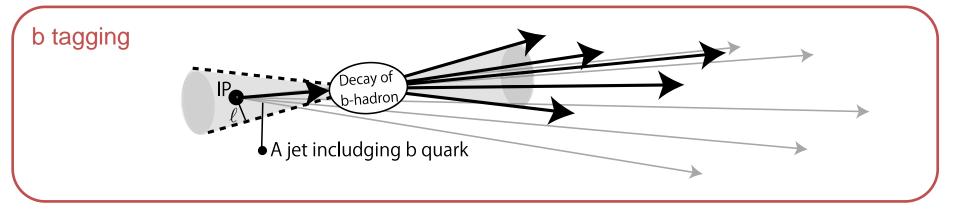

They will be updated to the validated tools for DBD.

Analysis Conditions

Target luminosity: 1 ab-1 (both 500 GeV and 1 TeV) **Polarizations:** nominal polarizations (-0.8,+0.2-0.3)

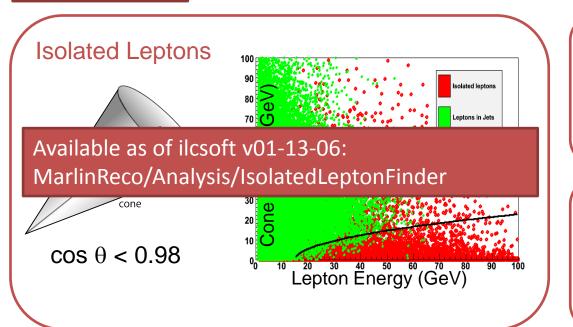
Event Selection

Fast simulation results based on the following variables:



Event Shape (thrust)

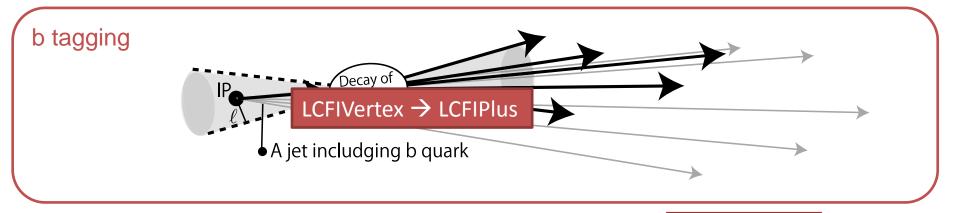
$$T = \max_{|\hat{n}|=1} \frac{\sum_{i} |\hat{n} \cdot \vec{p_i}|}{\sum_{i} |\vec{p_i}|}$$


Jet Finding thresholds

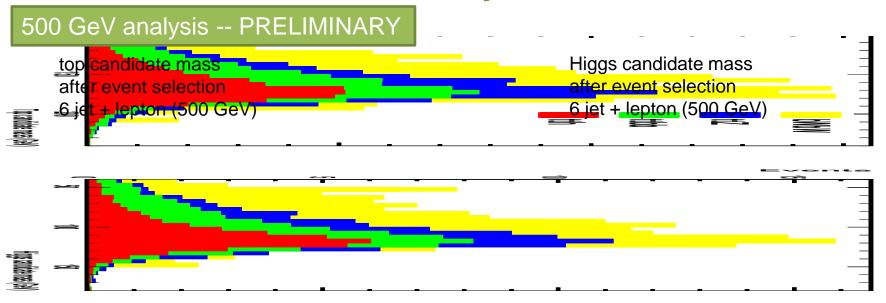
$$Y_{ij} = \frac{\min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{E_{\text{CM}}^2}$$

Event Selection

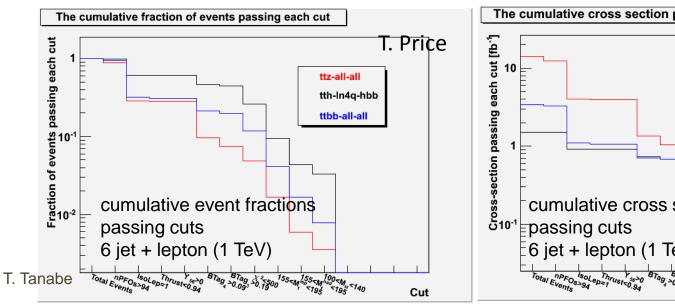
Full simulation:

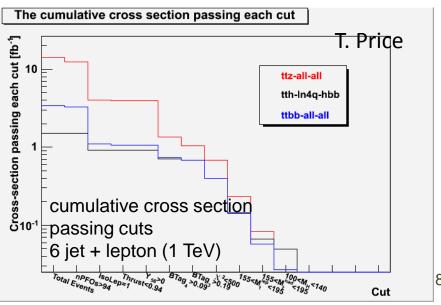


Event Shape (thrust)


$$T = \max_{|\hat{n}|=1} \frac{\sum_{i} |\hat{n} \cdot \vec{p_i}|}{\sum_{i} |\vec{p_i}|}$$

Jet Finding thresholds


$$Y_{ij} = \frac{\min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{E_{\text{CM}}^2}$$



Preliminary Results

1 TeV analysis -- PRELIMINARY

Sample requests for tth analysis

- 500 GeV samples are generated & simulated at KEK clusters
 - tth/ttZ/ttg* event generators ready
 - tt (6f) event generator not yet available
- 1 TeV samples are/will be made by central mass production
- For tth, ttZ, ttbb processes at 1 TeV
 - would like: 4 ab-1 (#events ~ 50,000) simulated
 - 10 ab-1 (#events ~ 260,000) already generated
- For ttbar (6f) processes at 1 TeV
 - samples not yet available !!
 - too late to decide preselections at this stage
 - 6f is also a background for other analysis (nunuH)
 - will therefore request simulation without preselections
 - 2 ab-1, ~1 million events simulated & generated

tth, ttZ, ttbb samples @ 1 TeV

i amoto							
A. Miyamoto	ess beam	-pol process	sID xsec(fb)	Nev@2ab-1	DBD (L80R20)	DBD (L80R30)	Max(F,G)
Ptth-6q-hbb	eL.pR	I106401	1.8002	3601	1945	2107	2107
Ptth-6q-hbb	eR.pL	1106402	0.8098	1620	65	57	65
Ptth-6q-hnc	onbb eL.pR	I106403	1.0403	2081	1124	1218	1218
Ptth-6q-hnc	onbb eR.pL	I106404	0.4680	936	38	33	38
Pttbb-6q-all	eL.pR	I106405	1.5606	3122	1686	1827	1827
Pttbb-6q-all	eR.pL	1106406	0.6910	1383	56	49	56
Pttz-6q-all	eL.pR	1106407	6.3878	12776	6900	7474	7474
Pttz-6q-all	eR.pL	1106408	1.9891	3979	160	140	160
Ptth-In4q-hl	bb eL.pR	I106409	1.7338	3468	1873	2029	2029
Ptth-In4q-hl	bb eR.pL	I106410	0.7801	1561	63	55	63
Ptth-In4q-h	nonbb eL.pR	I106411	1.0020	2004	1083	1173	1173
Ptth-In4q-h	nonbb eR.pL	1106412	0.4508	902	37	32	37
Pttbb-In4q-a	all eL.pR	I106413	1.5074	3015	1629	1764	1764
Pttbb-In4q-a	all eR.pL	1106414	0.6666	1334	54	47	54
Pttz-In4q-al	l eL.pR	I106415	6.1520	12304	6645	7198	7198
Pttz-In4q-al	l eR.pL	I106416	1.9164	3833	154	135	154
Total					23512	25338	25417

Requesting 2 ab-1 for tth, ttZ, ttbb (without 2l+2nu channels), total of ~25,000 events. Samples already available (thanks to Akiya) on the Grid at: /grid/ilc/prod/ilc/mc-dbd

Summary and Outlook

- Progress in 500 GeV and 1 TeV analyses
 - Good coverage in man power
 - Analysis chain in place, using existing tools and samples
 - Switch to centrally produces samples & validated tools when available
 - Collaboration with SiD analysts starts in June

MC request summary:

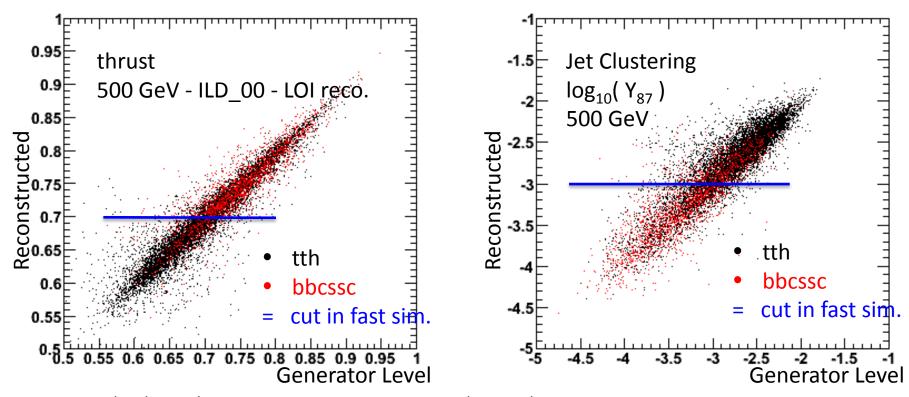
- ~50k events (total for tth, ttZ, ttbb, 4ab-1 each)
- ~1M events (ttbar, 2ab-1)

Backup Slides

Impact on y_t accuracy

- our fast simulation at 500 GeV shows S/B is ~O(1)
 - roughly expect 6x (2x) increase in signal (background) at 1 TeV
- statistical accuracy of δyt/yt = 0.5*sqrt(S+B)/S
 - calculate relative error on this number from MC statistics of S and B

(S,B) at 1		Lumi =	1 ab-1	Lumi = 2 ab-1		
ab-1	δyt/yt	S error	B error	S error	B error	
(50,100)	12%	17%	3.3%	12%	2.4%	
(100,50)	6.1%	13%	2.4%	9.4%	1.7%	
(100,100)	7.1%	13%	2.5%	8.8%	1.8%	
(100,200)	8.7%	12%	2.4%	8.3%	1.7%	
(200,100)	4.3%	9.4%	1.7%	6.7%	1.2%	
(200,200)	5.0%	8.8%	1.8%	6.3%	1.3%	


For <10% relative error on top Yukawa, would like 2 ab-1 for S; 1 ab-1 for B sufficient.

500 GeV fast simulation	t t H(6j)	tbW	$t\overline{t}Z$	$t\overline{t}g^*(b\overline{b})$
no cuts	282.3	980738.5	2406.9	1159.6
single isolated lepton	179.6	340069.0	790.6	397.7
thrust < 0.77	145.7	144999.0	616.7	266.0
$Y_{5\to 4} > 0.005$	125.5	12297.7	416.2	113.7
b-tagging	49.0	172.9	53.3	37.8
mass cuts	39.5	23.0	33.9	13.2

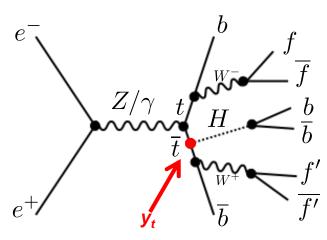
process		
	@ 500 GeV	@ 1 TeV
tth	0.45	2.5
ttZ	1.2	5.2
ttbb	0.75	1.3
tbW	580	250

Preselections

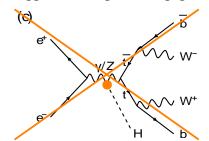
tth is to be studied in (1) 6 jets + lepton mode, and (2) 8 jets mode. main cuts in the analysis: event shape, jet clustering thresholds, b-tagging

Generator-level particles: generator status =1, not created in simulation, neutrino veto, cosTheta<0.997, pT>0.1

Reconstructed Particles: same cosTheta & pT cuts


T. Tanabe Some safe cuts may be possible, need more detailed study by analysts.

→ propose to let analysts generate large statistics background samples

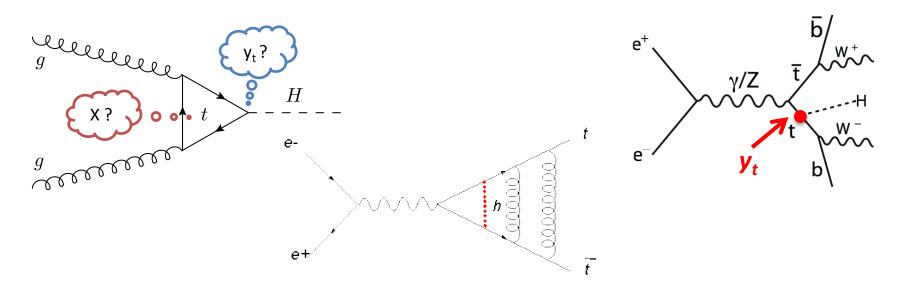

Evaluate accuracy of y_t

= Accuracy of e+e- → tth cross section

$$\frac{\Delta g_t^2}{g_t^2} = \frac{\Delta \sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}}$$

Higgs strahlung off Z negligible

Estimate the statistical uncertainty.


$$\left(\frac{\Delta \sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}}\right)^2 = S + B + \left(\frac{\Delta B_{\text{syst}}}{S}\right)^2 + \left(\frac{\Delta \mathcal{L}}{\mathcal{L}}\right)^2 + \left(\frac{\Delta \epsilon}{\epsilon}\right)^2$$

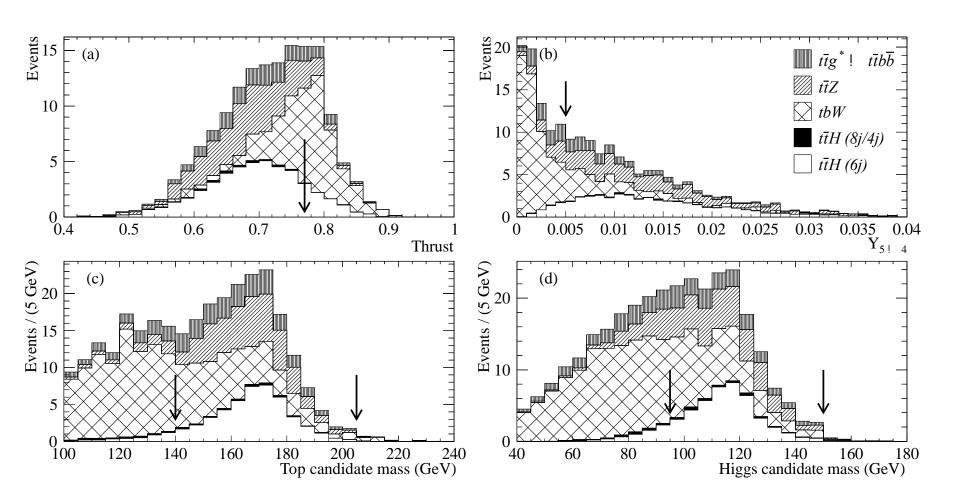
Statistical Uncertainty

Background Shape Systematics Luminosity Systematics Analysis Systematics

Indirect vs. direct measurement

- Indirect measurement of top Yukawa is possible at the ttbar threshold and also at the LHC via gluon fusion to ttbar (but the jet background makes it challenging)
 - if an anomaly is found in the production rate, one cannot distinguish
 (1) the coupling anomaly or (2) the presence of a new particle in the loop
- Need direct measurement; feasibility already shown for $\sqrt{s}=700-800$ GeV ILC; we show this for $\sqrt{s}=500$ GeV
 - direct measurement at LHC using h-> | has been proposed but it can only measure (x BR(h-> |))

Summary of cuts (fast simulation)

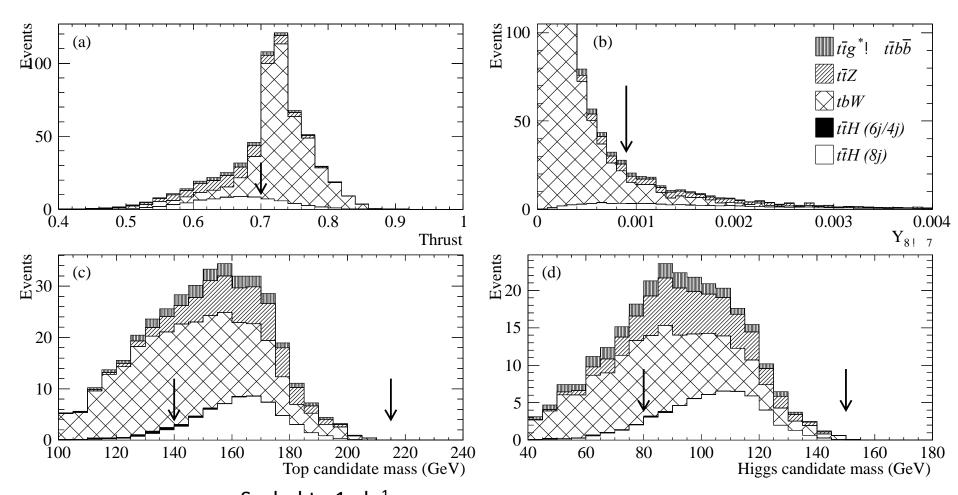

cut	6-jet + lepton	8-jet
number of isolated lepton	1	0
thrust	< 0.77	< 0.7
jet clustering	$Y_{5->4} > 0.005$	Y _{8->7} > 0.00080
b-tagging	4x b-jets	4x b-jets
top mass (GeV)	140 < m _t < 205	140 < m _H < 215
higgs mass (GeV)	95 < m _t < 150	80 < m _H < 150

6-jet + lepton cut flow (fast simulation)

cut \ sample	ttH (6J)	ttH (8J/4J)	tt	ttZ	ttg*-> ttbb	significance
no cuts	282.	358.	980739.	2407.	1160.	0.3
# isolated lepton = 1	180.	49.0	340069.	791.	398	0.3
thrust < 0.77	146.	37.7	144999.	617.	266.	0.4
Y _{5->4} > 0.005	126.	25.8	12298.	416.	114.	1.1
4x btag	49.0	4.2	173.	53.3	37.8	2.8
mass cuts	39.5	1.6	23.0	33.9	13.2	3.7

lumi = 1ab⁻¹, polarized beams

6-jet + lepton analysis (fast simulation)


Scaled to 1 ab^{-1} Beam polarization (Pol(e-),Pol(e+)) = (-0.8,+0.3) All other cuts applied.

8-jet cut flow (fast simulation)

cut \ sample	ttH (6J)	ttH (8J/4J)	tt	ttZ	ttg*-> ttbb	significance
no cuts	290.	358.	980739.	2406.	1160.	0.3
# isolated lepton = 0	266.	92.2	589716.	1351.	701.	0.3
thrust < 0.7	168.	46.7	107227.	818.	312.	0.5
Y _{8->7} > 0.0009	114.	13.3	4048.	350.	67.1	1.7
4x btag	66.6	6.9	443.	77.6	39.8	2.6
mass cuts	50.1	0.4	75.6	47.6	14.1	3.7

lumi = 1ab⁻¹, polarized beams

8-jet analysis (fast simulation)

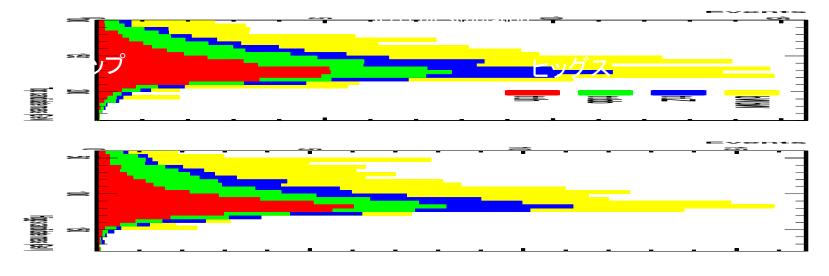
Scaled to 1 ab^{-1} Beam polarization (Pol(e-),Pol(e+)) = (-0.8,+0.3) All other cuts applied.

results (fast simulation)

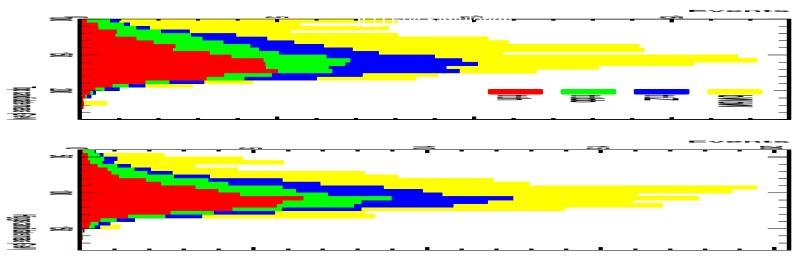
beam pol.(e-, e+)	6 jet + lepton	8 jet
(0.0, 0.0)	2.9	2.8
(-0.8, +0.3)	3.7	3.7

beam pol. (e-, e+)	combined significance	combined Δg _t / g _t
(0.0, 0.0)	4.0	12%
(-0.8, +0.3)	5.2	9.6%

ILC500 Lumi = 1 ab⁻¹ P(e-,e+)=(-0.8,+0.3)


preliminary results

PRD 84, 014033 (2011)


Fast Sim	tth	ttZ	ttbb	tbW
6 jet + lepton	280 → 40	2400 → 34	1200 → 13	$9.8 \times 10^5 \rightarrow 23$
Preliminary	290 → 3 4 Z: mis	stak e 100 0nd in the Do	correction, fixed Asec	9.8 × 10 ⁵ → below 76
Full Sim	tth	ttZ	ttbb	bWbW
6 jet + lepton	280 → 28	1900 → 16	1200 → 13	$9.1 \times 10^5 \rightarrow 19$
8 jet	290 → 34	1900 → 24	1200 → 14	$9.1 \times 10^5 \rightarrow 33$

- σ υ μοι. Ολογιτίοτυ J Ζυλογιτίο Ζυττυττοττο J Ο.Ζι διχιτία
- 8 jet: S/sqrt(S+B) = 34/sqrt(34+24+14+33) = 3.32 sigma
- Assuming Gaussian errors, combined significance is 4.60
- Relative uncertainty on y_t is 0.5/(uncertainty in xsec) = 0.5/4.60 = 0.11

6 jet + lepton

