Status of the WW analysis at 1 TeV

Aura Rosca

DESY

ILD Meeting, Kyushu University, Fukuoka, Japan, 23 - 25 of May, 2012

Introduction

- Beam polarization can be measured with polarimeters to a precision of 2.5 · 10⁻³.
 - however, not the luminosity-weighted polarization
- Large luminosity at the ILC allows an accurate measurement of the luminosity-weighted polarization from the data, for example using the process e⁺e⁻ → W⁺W⁻.
 - also, calibration of the absolute polarization scale

W-pair Production and Decay

- Mixture of v t-channel and Z, γ s-channel exchange.
- Cross section $\sigma = 7 3$ pb at $E_{CM} = 500$ GeV 1 TeV.
- Decay modes:

# channels	process	BR
1	$W^+W^- \rightarrow qqqq$	45.6%
3	$W^+W^- \rightarrow qq\ell v$	43.8%
6	$W^+W^- \rightarrow \ell \nu \ell \nu$	10.6%

Polarization Measurement with W-pairs

- Total cross section and differential cross section $d\sigma/d\theta_W$ strongly sensitive to the polarization:
 - use the Blondel technique
 - fit the W production angle
- Forward peak dominated by v exchange and independent of anomalous couplings:
 - fit simultaneously the polarisation and anomalous couplings

Blondel Scheme with Ws - Reminder

- Four independent measurements: σ_{RR} , σ_{LL} , σ_{RL} , σ_{LR} .
- Can measure P_{e^+} and P_{e^-} , if $|P^{\mathbb{R}}| = |P^{\mathbb{L}}|$ for each beam:

$$P_{e^{\pm}} = \sqrt{\frac{(\sigma_{RL} + \sigma_{LR} - \sigma_{RR} - \sigma_{LL})(\mp \sigma_{RL} \pm \sigma_{LR} - \sigma_{RR} + \sigma_{LL})}{(\sigma_{RL} + \sigma_{LR} + \sigma_{LR} + \sigma_{LL})(\mp \sigma_{RL} \pm \sigma_{LR} + \sigma_{RR} - \sigma_{LL})}}$$

• Polarisation asymmetry $|\mathcal{P}_{e^{\pm}}^{R}|$ - $|\mathcal{P}_{e^{\pm}}^{L}|$ needs to be measured by polarimeters.

Fit of the W Production Angle

Obtain templates of $d\sigma(\cos\theta, Pe-, Pe+)$ and fit data extracted from the templates for given Pe-, Pe+, in bins of $\cos\theta$

(from Ivan's thesis).

Selection of Semi-leptonic Final State

Topology

- 2 jets
- 1 charged lepton
- 1 neutrino
- Straightforward reconstruction
- Low background

- Selection at 500 GeV
 - Cut based selection
 - Durham algorithm to force the event in three jets
 - Isolation cuts for the lepton
 - Cut on the reconstructed W mass
 - Cut on the W production angle
- Performance at 500 GeV:
 - Efficiency: 67%
 - Backgrounds: ~16%

Selected Results at $E_{CM} = 500 \text{ GeV}$

• Data reduction at E_{CM} = 500 GeV (P_{e+} = +0.30, P_{e-} = -0.80, lumi = 80 fb⁻¹)

Process	Selected events	Statistical Error (weight)
signal	71611	0.4% (1)
2f	875	3.4% (1)
4f	2548	2.0% (1)
$q\overline{q} au v$	8287	1.1% (1)
6f	256	6.3% (1)

5/23/12

Signal:

$$e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}e\nu$$
, $q\overline{q}\mu\nu$

- Main backgrounds: 4 fermions
 - Tau-signal: ~10%
 - dominant background
 - cross section scales the same as the one of the signal
 - Single W: ~3%
 - Cross section raises with energy
- Analysis needed lumi = 120 fb⁻¹ to extract the polarization with the angular fit method.

Selected Results at $E_{CM} = 500 \text{ GeV}$

Precision achievable on polarization measurement:

- Lower statistical precision for positrons.
- For electrons, error limited by systematic uncertainty
 - Also, statistic and systematic errors are comparable for 100 fb⁻¹.
 - Require not more than about ~260 fb⁻¹ at 1 TeV.

Status at 1 TeV

- Signal and backgrounds (2 fermions and 4 fermions) were generated by Mikael Berggren.
- Analysis benefits from the framework set up by Ivan Marchesini. Some improvements expected from:
 - Lepton identification
 - Use of kinematic fit: 1C, 2C
- Framework taken over and tested on generator level data, with 260 fb⁻¹:
 - for now only semi-leptonic channel

Status at 1 TeV

Look at the polarization dependence in bins of $\cos \theta_W$ with 260 fb⁻¹, equally divided between the 4 polarization configurations.

Status at 1 TeV

• Fit results: electron polarization

Sample Request for WW at 1 TeV

- Signal: $q\overline{q}\ell v$, $\ell = e, \mu, \tau$
 - 260 fb⁻¹, equally divided between the 4 polarization configurations, 1.1M events (includes dominant backgrounds $q\bar{q}\tau v$, Wev)
- Other background processes:
 - Zee, Zvv have high cross section but should be harmless, so
 - could ask for a minimum of 100 fb⁻¹, ~1.2M events
 - Other 4 fermion processes, 200 fb⁻¹, ~0.8M events
 - 2 fermion processes, a minimum of 100 fb⁻¹, ~0.5M events
 Total background: 2.5M events
- Note that we need all polarization combinations.

Summary

- Signal and background are generated.
- Analysis chain is tested.
- Ready to start once simulated samples are available.