Status of common event samples

Mikael Berggren¹

¹DESY Hamburg

ILD meeting, Fukuoka, Japan , May 23 ,2012

Mikael Berggren (DESY-HH)

Introduction

5 Conclusions

Common Task Group for Generators

A cross-region and cross-concept working group was created to look into the generator side Members

- Tim Barklow, SiD/Americas
- Akiya Miyamoto.ILD/Asia
- M.B., ILD/Europe
- Since, CLIC has also joined
 - Stephane Poss

- The DBD bench-marks are:
 - $e^+e^- \rightarrow \nu \bar{\nu} h^0$
 - $e^+e^- \rightarrow W^+W^-$
 - $e^+e^- \rightarrow t\bar{t}h^0$
- All at *E_{CMS}*=1TeV
- Also: Redo on LOI analysis with the new software. For both ILD and SiD: $t\bar{t}$ at E_{CMS} =500 GeV.
- Machine backgrounds and same-bunch crossing $\gamma\gamma$ events should be overlaid (in some way...)

- The DBD bench-marks are:
 - $e^+e^- \rightarrow \nu \bar{\nu} h^0$
 - $e^+e^- \rightarrow W^+W^-$
 - $e^+e^- \rightarrow t\bar{t}h^0$
- All at *E_{CMS}*=1TeV
- Also: Redo on LOI analysis with the new software. For both ILD and SiD: $t\bar{t}$ at E_{CMS} =500 GeV.
- Machine backgrounds and same-bunch crossing $\gamma\gamma$ events should be overlaid (in some way...)

- The DBD bench-marks are:
 - $e^+e^- \rightarrow \nu \bar{\nu} h^0$
 - $e^+e^- \rightarrow W^+W^-$
 - $e^+e^- \rightarrow t\bar{t}h^0$
- All at *E_{CMS}*=1TeV
- Also: Redo on LOI analysis with the new software. For both ILD and SiD: $t\bar{t}$ at E_{CMS} =500 GeV.
- Machine backgrounds and same-bunch crossing $\gamma\gamma$ events should be overlaid (in some way...)

- The DBD bench-marks are:
 - $e^+e^- \rightarrow \nu \bar{\nu} h^0$
 - $e^+e^- \rightarrow W^+W^-$
 - $e^+e^- \rightarrow t\bar{t}h^0$
- All at *E_{CMS}*=1TeV
- Also: Redo on LOI analysis with the new software. For both ILD and SiD: $t\bar{t}$ at E_{CMS} =500 GeV.
- Machine backgrounds and same-bunch crossing $\gamma\gamma$ events should be overlaid (in some way...)

Why not do as we did for the LOI ?

- Work needs to be shared.
- There are a number of short-comings with the version of Whizard used:
 - Diagonal CKM
 - No tau polarisation in decays
 - Hadronisation tune in PYTHIA
 - Colour-flow and helicity information

Why not do as we did for the LOI ?

- Work needs to be shared.
- There are a number of short-comings with the version of Whizard used:
 - Diagonal CKM
 - No tau polarisation in decays
 - Hadronisation tune in PYTHIA
 - Colour-flow and helicity information

2-6 fermions are done with Whizard

- Whizard version by choice : 1.95. Has
 - CKM correct
 - Colour flow
 - Spin

- Fragmentation: Latest PYTHIA6 (6.422).
- Tuning: LEP I tuning of PYTHIA kindly provided by OPAL.
- Tau-polarisation in decay: TAUOLA interface standardised, for polarisation-dependent τ -decays. Also for τ 's in fragmentation $W \rightarrow \tau \nu$.

2-6 fermions are done with Whizard

- Whizard version by choice : 1.95. Has
 - CKM correct
 - Colour flow
 - Spin

- Fragmentation: Latest PYTHIA6 (6.422).
- Tuning: LEP I tuning of PYTHIA kindly provided by OPAL.
- Tau-polarisation in decay: TAUOLA interface standardised, for polarisation-dependent τ -decays. Also for τ 's in fragmentation $W \rightarrow \tau \nu$.

- 2-6 fermions are done with Whizard
 - Whizard version by choice : 1.95. Has
 - CKM correct
 - Colour flow
 - Spin

- Fragmentation: Latest PYTHIA6 (6.422).
- Tuning: LEP I tuning of PYTHIA kindly provided by OPAL.
- Tau-polarisation in decay: TAUOLA interface standardised, for polarisation-dependent τ -decays. Also for τ 's in fragmentation $W \rightarrow \tau \nu$.

- 2-6 fermions are done with Whizard
 - Whizard version by choice : 1.95. Has
 - CKM correct
 - Colour flow
 - Spin

- Fragmentation: Latest PYTHIA6 (6.422).
- Tuning: LEP I tuning of PYTHIA kindly provided by OPAL.
- Tau-polarisation in decay: TAUOLA interface standardised, for polarisation-dependent τ -decays. Also for τ 's in fragmentation $W \rightarrow \tau \nu$.

- 2-6 fermions are done with Whizard
 - Whizard version by choice : 1.95. Has
 - CKM correct
 - Colour flow
 - Spin

- Fragmentation: Latest PYTHIA6 (6.422).
- Tuning: LEP I tuning of PYTHIA kindly provided by OPAL.
- Tau-polarisation in decay: TAUOLA interface standardised, for polarisation-dependent τ -decays. Also for τ 's in fragmentation $W \rightarrow \tau \nu$.

- Extension of information in the event record:
 - Colour singlet system information and particle spin.
 - Beam-particles before and after beam-strahlung.
 - Process ID in each event record.
- Coding of FSR: Mokka modified to be insensitive (as SLiC already was).
- Coding of displaced vertecies: Mokka modified so that the generator decides (B. Vormwald).
- Crossing-angle: generate head-on, Mokka takes care of boosting to the side. NB: Numbers in MCParticle NOT identical to input stdhep-numbers !
- In Whizard, Flavour-summed channels are used. Will reduce the 2348 channels to a few tens. Two options:
 - Sum in phase-space evaluation: Higher gain in simplicity and CPU-time,but less flexible.
 - Channel mixing in generation: Any set of channels can be merged.

Both options are used, as well as mixes of them

Mikael Berggren (DESY-HH)

- Extension of information in the event record:
 - Colour singlet system information and particle spin.
 - Beam-particles before and after beam-strahlung.
 - Process ID in each event record.
- Coding of FSR: Mokka modified to be insensitive (as SLiC already was).
- Coding of displaced vertecies: Mokka modified so that the generator decides (B. Vormwald).
- Crossing-angle: generate head-on, Mokka takes care of boosting to the side. NB: Numbers in MCParticle NOT identical to input stdhep-numbers !
- In Whizard, Flavour-summed channels are used. Will reduce the 2348 channels to a few tens. Two options:
 - Sum in phase-space evaluation: Higher gain in simplicity and CPU-time,but less flexible.
 - Channel mixing in generation: Any set of channels can be merged.

Both options are used, as well as mixes of them

Mikael Berggren (DESY-HH)

- Extension of information in the event record:
 - Colour singlet system information and particle spin.
 - Beam-particles before and after beam-strahlung.
 - Process ID in each event record.
- Coding of FSR: Mokka modified to be insensitive (as SLiC already was).
- Coding of displaced vertecies: Mokka modified so that the generator decides (B. Vormwald).
- Crossing-angle: generate head-on, Mokka takes care of boosting to the side. NB: Numbers in MCParticle NOT identical to input stdhep-numbers !
- In Whizard, Flavour-summed channels are used. Will reduce the 2348 channels to a few tens. Two options:
 - Sum in phase-space evaluation: Higher gain in simplicity and CPU-time,but less flexible.
 - Channel mixing in generation: Any set of channels can be merged.

Both options are used, as well as mixes of them

Mikael Berggren (DESY-HH)

- Extension of information in the event record:
 - Colour singlet system information and particle spin.
 - Beam-particles before and after beam-strahlung.
 - Process ID in each event record.
- Coding of FSR: Mokka modified to be insensitive (as SLiC already was).
- Coding of displaced vertecies: Mokka modified so that the generator decides (B. Vormwald).
- Crossing-angle: generate head-on, Mokka takes care of boosting to the side. NB: Numbers in MCParticle NOT identical to input stdhep-numbers !
- In Whizard, Flavour-summed channels are used. Will reduce the 2348 channels to a few tens. Two options:
 - Sum in phase-space evaluation: Higher gain in simplicity and CPU-time,but less flexible.
 - Channel mixing in generation: Any set of channels can be merged.

Both options are used, as well as mixes of them

Mikael Berggren (DESY-HH)

- Extension of information in the event record:
 - Colour singlet system information and particle spin.
 - Beam-particles before and after beam-strahlung.
 - Process ID in each event record.
- Coding of FSR: Mokka modified to be insensitive (as SLiC already was).
- Coding of displaced vertecies: Mokka modified so that the generator decides (B. Vormwald).
- Crossing-angle: generate head-on, Mokka takes care of boosting to the side. NB: Numbers in MCParticle NOT identical to input stdhep-numbers !
- In Whizard, Flavour-summed channels are used. Will reduce the 2348 channels to a few tens. Two options:
 - Sum in phase-space evaluation: Higher gain in simplicity and CPU-time,but less flexible.
 - Channel mixing in generation: Any set of channels can be merged. Both options are used, as well as mixes of them.

Mikael Berggren (DESY-HH)

- T. Barklow's scripts to run Whizard jobs at the SLAC batch server migrated and adapted to the KEK environment, and to DESY.
- An SVN project holding Whizard source-code, installation scripts and process-description files has been set up at CERN by S. Poss.
- As generation production will now be distributed → An meta-data file with file-locations, generator settings, etc. is updated by each generation job.
- Human-readable full information on each sample available on the web.

- T. Barklow's scripts to run Whizard jobs at the SLAC batch server migrated and adapted to the KEK environment, and to DESY.
- An SVN project holding Whizard source-code, installation scripts and process-description files has been set up at CERN by S. Poss.
- As generation production will now be distributed → An meta-data file with file-locations, generator settings, etc. is updated by each generation job.
- Human-readable full information on each sample available on the web.

- T. Barklow's scripts to run Whizard jobs at the SLAC batch server migrated and adapted to the KEK environment, and to DESY.
- An SVN project holding Whizard source-code, installation scripts and process-description files has been set up at CERN by S. Poss.
- As generation production will now be distributed → An meta-data file with file-locations, generator settings, etc. is updated by each generation job.
- Human-readable full information on each sample available on the web.

- T. Barklow's scripts to run Whizard jobs at the SLAC batch server migrated and adapted to the KEK environment, and to DESY.
- An SVN project holding Whizard source-code, installation scripts and process-description files has been set up at CERN by S. Poss.
- As generation production will now be distributed → An meta-data file with file-locations, generator settings, etc. is updated by each generation job.
- Human-readable full information on each sample available on the web.

Note:

The final official 1 TeV beam-parameters from the GDE were final released only on Dec. 23.

Also at other energies the parameters have changed: waist-shift rather than travelling focus.

GuineaPig simulation and beam-spectra were ready by mid-January.

Assigned to T Barklow (SLAC).

• $\nu\nu h$: Includes $h \rightarrow gg$ and WW^* , so need 6-fermion background.

- Large advantage with aliasing, esp. when Cabibbo suppressed decays included.
- However: Integration gets very time-consuming with aliasing.
- Full signal sample is Done.
- Background sample is Done. Includes all 6-fermion final-states, ie. it contains all $t\bar{t}$ channels.
- A few technicalities remains to be addressed (file-naming, meta-data).
- Samples will then be accessible on the grid.

Assigned to T Barklow (SLAC).

- $\nu\nu h$: Includes $h \rightarrow gg$ and WW^* , so need 6-fermion background.
 - Large advantage with aliasing, esp. when Cabibbo suppressed decays included.
 - However: Integration gets very time-consuming with aliasing.
 - Full signal sample is Done.
 - Background sample is Done. Includes all 6-fermion final-states, ie. it contains all $t\bar{t}$ channels.
 - A few technicalities remains to be addressed (file-naming, meta-data).
 - Samples will then be accessible on the grid.

Assigned to T Barklow (SLAC).

- $\nu\nu h$: Includes $h \rightarrow gg$ and WW^* , so need 6-fermion background.
 - Large advantage with aliasing, esp. when Cabibbo suppressed decays included.
 - However: Integration gets very time-consuming with aliasing.
 - Full signal sample is Done.
 - Background sample is Done. Includes all 6-fermion final-states, ie. it contains all *tt* channels.
 - A few technicalities remains to be addressed (file-naming, meta-data).
 - Samples will then be accessible on the grid.

Assigned to T Barklow (SLAC).

- $\nu\nu h$: Includes $h \rightarrow gg$ and WW^* , so need 6-fermion background.
 - Large advantage with aliasing, esp. when Cabibbo suppressed decays included.
 - However: Integration gets very time-consuming with aliasing.
 - Full signal sample is Done.
 - Background sample is Done. Includes all 6-fermion final-states, ie. it contains all *tt* channels.
 - A few technicalities remains to be addressed (file-naming, meta-data).
 - Samples will then be accessible on the grid.

Assigned to A. Miyamoto (KEK).

• ttH: 8 fermions background, Very difficult for Whizard.

• Use Physim

- ttH (ie. 6fH), ttff (ie. 8f) by Helas (helicity amplitude approach).
- Same beam-strahlung function as Whizard.
- Same PYTHIA tune.
- Same TAUOLA.
- Same output STDHEP format.
- Several checks done to make sure that there are no important differences wrt. Whizard.

Assigned to A. Miyamoto (KEK).

- *ttH*: 8 fermions background, Very difficult for Whizard.
- Use Physim
 - ttH (ie. 6fH), ttff (ie. 8f) by Helas (helicity amplitude approach).
 - Same beam-strahlung function as Whizard.
 - Same PYTHIA tune.
 - Same TAUOLA.
 - Same output STDHEP format.
- Several checks done to make sure that there are no important differences wrt. Whizard.

Assigned to A. Miyamoto (KEK).

- *ttH*: 8 fermions background, Very difficult for Whizard.
- Use Physim
 - ttH (ie. 6fH), ttff (ie. 8f) by Helas (helicity amplitude approach).
 - Same beam-strahlung function as Whizard.
 - Same PYTHIA tune.
 - Same TAUOLA.
 - Same output STDHEP format.
- Several checks done to make sure that there are no important differences wrt. Whizard.

• $e^+e^- \rightarrow t\bar{t}H, t\bar{t}b\bar{b}, t\bar{t}Z$ all fully generated.

- Classified by beam-polarisation, $t\bar{t}$ decay-mode (6q, $l\nu 4q$, $2l2\nu b\bar{b}$) and Higgs.
- Always at least 50 kevents, even if 1 ab^{-1} is less.
- Log-files etc. on http://www-jlc-in.kek.jp/ miyamoto/mcdbd.log/generted/1000-B1b_ws/tth

• $e^+e^- \rightarrow t\bar{t}H, t\bar{t}b\bar{b}, t\bar{t}Z$ all fully generated.

- Classified by beam-polarisation, $t\bar{t}$ decay-mode (6q, $l\nu 4q$, $2l2\nu b\bar{b}$) and Higgs.
- Always at least 50 kevents, even if 1 ab^{-1} is less.
- Log-files etc. on http://www-jlc-in.kek.jp/ miyamoto/mcdbd.log/generted/1000-B1b_ws/tth

- $e^+e^- \rightarrow t\bar{t}H, t\bar{t}b\bar{b}, t\bar{t}Z$ all fully generated.
- Classified by beam-polarisation, $t\bar{t}$ decay-mode (6q, $l\nu 4q$, $2l2\nu b\bar{b}$) and Higgs.
- Always at least 50 kevents, even if 1 ab^{-1} is less.
- Log-files etc. on http://www-jlc-in.kek.jp/ miyamoto/mcdbd.log/generted/1000-B1b_ws/tth

- $e^+e^- \rightarrow t\bar{t}H, t\bar{t}b\bar{b}, t\bar{t}Z$ all fully generated.
- Classified by beam-polarisation, $t\bar{t}$ decay-mode (6q, $l\nu 4q$, $2l2\nu b\bar{b}$) and Higgs.
- Always at least 50 kevents, even if 1 ab^{-1} is less.
- Log-files etc. on http://www-jlc-in.kek.jp/ miyamoto/mcdbd.log/generted/1000-B1b_ws/tth

Assigned to MB.

- 4 fermions: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section. DONE.
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states, about a week for single bosons.
 - All DONE.

• 2 fermions:

- At 1 TeV: Similar cross-sections as 4-fermion → also do these.
- ... except that $e^+e^- \rightarrow e^+e^-$ are strongly restricted.
- Technical difficulties due to very low generation efficiency 1 event per 1000 generated accepted: Solved.
- Status: DONE
- STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://ilcsoft.desy.de/dbd/generated/4f_production/)
- NB: Cross-sections are in the 10 pb range → we are asked to fully simulate tens of millions of events !!!

Mikael Berggren (DESY-HH)

Assigned to MB.

- 4 fermions: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section. DONE.
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states, about a week for single bosons.
 - All DONE.
- 2 fermions:
 - At 1 TeV: Similar cross-sections as 4-fermion \rightarrow also do these.
 - ... except that $e^+e^- \rightarrow e^+e^-$ are strongly restricted.
 - Technical difficulties due to very low generation efficiency 1 event per 1000 generated accepted: Solved.
 - Status: DONE
- STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://ilcsoft.desy.de/dbd/generated/4f_production/)
- NB: Cross-sections are in the 10 pb range → we are asked to fully simulate tens of millions of events !!!

Mikael Berggren (DESY-HH)

Assigned to MB.

- 4 fermions: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section. DONE.
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states, about a week for single bosons.
 - All DONE.
- 2 fermions:
 - At 1 TeV: Similar cross-sections as 4-fermion → also do these.
 - ... except that $e^+e^- \rightarrow e^+e^-$ are strongly restricted.
 - Technical difficulties due to very low generation efficiency 1 event per 1000 generated accepted: Solved.
 - Status: DONE
- STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://ilcsoft.desy.de/dbd/generated/4f_production/)
- NB: Cross-sections are in the 10 pb range → we are asked to fully simulate tens of millions of events !!!

Mikael Berggren (DESY-HH)

Assigned to MB.

- 4 fermions: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section. DONE.
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states, about a week for single bosons.
 - All DONE.
- 2 fermions:
 - At 1 TeV: Similar cross-sections as 4-fermion \rightarrow also do these.
 - ... except that $e^+e^- \rightarrow e^+e^-$ are strongly restricted.
 - Technical difficulties due to very low generation efficiency 1 event per 1000 generated accepted: Solved.
 - Status: DONE
- STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://ilcsoft.desy.de/dbd/generated/4f_production/)
- NB: Cross-sections are in the 10 pb range → we are asked to fully simulate tens of millions of events !!!

Mikael Berggren (DESY-HH)

Assigned to MB.

- 4 fermions: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section. DONE.
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states, about a week for single bosons.
 - All DONE.
- 2 fermions:
 - At 1 TeV: Similar cross-sections as 4-fermion \rightarrow also do these.
 - ... except that $e^+e^- \rightarrow e^+e^-$ are strongly restricted.
 - Technical difficulties due to very low generation efficiency 1 event per 1000 generated accepted: Solved.
 - Status: DONE
- STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://ilcsoft.desy.de/dbd/generated/4f_production/)
- NB: Cross-sections are in the 10 pb range → we are asked to fully simulate tens of millions of events !!!

Mikael Berggren (DESY-HH)

Assigned to MB.

- 4 fermions: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section. DONE.
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states, about a week for single bosons.
 - All DONE.
- 2 fermions:
 - At 1 TeV: Similar cross-sections as 4-fermion \rightarrow also do these.
 - ... except that $e^+e^- \rightarrow e^+e^-$ are strongly restricted.
 - Technical difficulties due to very low generation efficiency 1 event per 1000 generated accepted: Solved.
 - Status: DONE
- STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://ilcsoft.desy.de/dbd/generated/4f_production/)
- NB: Cross-sections are in the 10 pb range → we are asked to fully simulate tens of millions of events !!!

Assigned to MB.

- 4 fermions: All setup at DESY.
 - Integration of all 4 fermion final-states: over-night job, with sub-per mil uncertainty on cross-section. DONE.
 - Generation of 1 ab⁻¹ also over-night job for non-electron final states, about a week for single bosons.
 - All DONE.
- 2 fermions:
 - At 1 TeV: Similar cross-sections as 4-fermion \rightarrow also do these.
 - ... except that $e^+e^- \rightarrow e^+e^-$ are strongly restricted.
 - Technical difficulties due to very low generation efficiency 1 event per 1000 generated accepted: Solved.
 - Status: DONE
- STDHEP:s on grid, log-files, steerings, diagram-plots, etc. on the web (http://ilcsoft.desy.de/dbd/generated/4f_production/)
- NB: Cross-sections are in the 10 pb range → we are asked to fully simulate tens of millions of events !!!

Mikael Berggren (DESY-HH)

- All polarisation configurations needed for the benchmark.
- Assume 80 % of $\int \mathcal{L}$ at (+-) and (-+), 20 % at (++) and (-).
- $P_{e^-} = \pm 0.8$ and $P_{e^+} = \pm 0.2$.
- Then: need 27.4/22.6/22.6/27.4 % of ∫ L at +-/-/++/-+ to get independent samples with unit event weight (or to make pre-mixed samples as SiD will do)
- $\int \mathcal{L} \times \sigma$ then yields 20 Mevents for 1 ab⁻¹
- However, only $e^+e^- \rightarrow WW \rightarrow q\bar{q}\ell\nu$ is "signal"= 4.3 Mevents.
- Remaining 16 Mevents are dominated by single Z. Only simulate *O*(1 Mevent): See A. Rosca's talk for details.

- All polarisation configurations needed for the benchmark.
- Assume 80 % of $\int \mathcal{L}$ at (+-) and (-+), 20 % at (++) and (-).
- $P_{e^-} = \pm 0.8$ and $P_{e^+} = \pm 0.2$.
- Then: need 27.4/22.6/22.6/27.4 % of ∫ L at +-/-/++/-+ to get independent samples with unit event weight (or to make pre-mixed samples as SiD will do)
- $\int \mathcal{L} \times \sigma$ then yields 20 Mevents for 1 ab⁻¹
- However, only $e^+e^- \rightarrow WW \rightarrow q\bar{q}\ell\nu$ is "signal"= 4.3 Mevents.
- Remaining 16 Mevents are dominated by single Z. Only simulate *O*(1 Mevent): See A. Rosca's talk for details.

- All polarisation configurations needed for the benchmark.
- Assume 80 % of $\int \mathcal{L}$ at (+-) and (-+), 20 % at (++) and (-).
- $P_{e^-} = \pm 0.8$ and $P_{e^+} = \pm 0.2$.
- Then: need 27.4/22.6/22.6/27.4 % of ∫ L at +-/-/++/-+ to get independent samples with unit event weight (or to make pre-mixed samples as SiD will do)
- $\int \mathcal{L} \times \sigma$ then yields 20 Mevents for 1 ab⁻¹
- However, only $e^+e^- \rightarrow WW \rightarrow q\bar{q}\ell\nu$ is "signal"= 4.3 Mevents.
- Remaining 16 Mevents are dominated by single Z. Only simulate O(1 Mevent): See A. Rosca's talk for details.

- All polarisation configurations needed for the benchmark.
- Assume 80 % of $\int \mathcal{L}$ at (+-) and (-+), 20 % at (++) and (-).
- $\mathcal{P}_{e^-} = \pm 0.8$ and $\mathcal{P}_{e^+} = \pm 0.2$.
- Then: need 27.4/22.6/22.6/27.4 % of ∫ L at +-/-/++/-+ to get independent samples with unit event weight (or to make pre-mixed samples as SiD will do)
- $\int \mathcal{L} \times \sigma$ then yields 20 Mevents for 1 ab⁻¹
- However, only $e^+e^- \rightarrow WW \rightarrow q\bar{q}\ell\nu$ is "signal" = 4.3 Mevents.
- Remaining 16 Mevents are dominated by single Z. Only simulate O(1 Mevent): See A. Rosca's talk for details.

- All polarisation configurations needed for the benchmark.
- Assume 80 % of $\int \mathcal{L}$ at (+-) and (-+), 20 % at (++) and (-).
- $\mathcal{P}_{e^-} = \pm 0.8$ and $\mathcal{P}_{e^+} = \pm 0.2$.
- Then: need 27.4/22.6/22.6/27.4 % of ∫ L at +-/-/++/-+ to get independent samples with unit event weight (or to make pre-mixed samples as SiD will do)
- $\int \mathcal{L} \times \sigma$ then yields 20 Mevents for 1 ab⁻¹
- However, only $e^+e^- \rightarrow WW \rightarrow q\bar{q}\ell\nu$ is "signal"= 4.3 Mevents.
- Remaining 16 Mevents are dominated by single Z. Only simulate *O*(1 Mevent): See A. Rosca's talk for details.

- 2650 bunch-crossings = one bunch train produced with GuineaPig, by A. Hartin.
- Pairs-files copied to grid, with names following the conventions.
- Also: One bunch-train at 500 GeV (=1325 BX:es) aviiable. Latest TDR beam-parameters from GDE used.
- Status: DONE
- Low p_T , high cross-section, $\gamma\gamma$ background :
 - Uses PYTHIA-inside-Whizard.
 - Done, but not yet on the grid.
- High $p_T \gamma \gamma$ and $e\gamma$ background :
 - Uses Whizard.
 - Also includes final-states with > 2 fermions.
 - Done, but not yet on the grid.

- 2650 bunch-crossings = one bunch train produced with GuineaPig, by A. Hartin.
- Pairs-files copied to grid, with names following the conventions.
- Also: One bunch-train at 500 GeV (=1325 BX:es) avilable. Latest TDR beam-parameters from GDE used.
- Status: DONE
- Low p_T , high cross-section, $\gamma\gamma$ background :
 - Uses PYTHIA-inside-Whizard.
 - Done, but not yet on the grid.
- High $p_T \gamma \gamma$ and $e \gamma$ background :
 - Uses Whizard.
 - Also includes final-states with > 2 fermions.
 - Done, but not yet on the grid.

- 2650 bunch-crossings = one bunch train produced with GuineaPig, by A. Hartin.
- Pairs-files copied to grid, with names following the conventions.
- Also: One bunch-train at 500 GeV (=1325 BX:es) aviiable. Latest TDR beam-parameters from GDE used.
- Status: DONE
- Low p_T , high cross-section, $\gamma\gamma$ background :
 - Uses PYTHIA-inside-Whizard.
 - Done, but not yet on the grid.
- High $p_T \gamma \gamma$ and e_γ background :
 - Uses Whizard.
 - Also includes final-states with > 2 fermions.
 - Done, but not yet on the grid.

- 2650 bunch-crossings = one bunch train produced with GuineaPig, by A. Hartin.
- Pairs-files copied to grid, with names following the conventions.
- Also: One bunch-train at 500 GeV (=1325 BX:es) aviiable. Latest TDR beam-parameters from GDE used.
- Status: DONE
- Low p_T , high cross-section, $\gamma\gamma$ background :
 - Uses PYTHIA-inside-Whizard.
 - Done, but not yet on the grid.
- High $p_T \gamma \gamma$ and e_γ background :
 - Uses Whizard.
 - Also includes final-states with > 2 fermions.
 - Done, but not yet on the grid.

- 2650 bunch-crossings = one bunch train produced with GuineaPig, by A. Hartin.
- Pairs-files copied to grid, with names following the conventions.
- Also: One bunch-train at 500 GeV (=1325 BX:es) aviiable. Latest TDR beam-parameters from GDE used.
- Status: DONE
- Low p_T , high cross-section, $\gamma\gamma$ background :
 - Uses PYTHIA-inside-Whizard.
 - Done, but not yet on the grid.
- High $p_T \gamma \gamma$ and $e \gamma$ background :
 - Uses Whizard.
 - Also includes final-states with > 2 fermions.
 - Done, but not yet on the grid.

- 2650 bunch-crossings = one bunch train produced with GuineaPig, by A. Hartin.
- Pairs-files copied to grid, with names following the conventions.
- Also: One bunch-train at 500 GeV (=1325 BX:es) aviiable. Latest TDR beam-parameters from GDE used.
- Status: DONE
- Low p_T , high cross-section, $\gamma\gamma$ background :
 - Uses PYTHIA-inside-Whizard.
 - Done, but not yet on the grid.
- High $p_T \gamma \gamma$ and e_γ background :
 - Uses Whizard.
 - Also includes final-states with > 2 fermions.
 - Done, but not yet on the grid.

• High $p_T \gamma \gamma$ of "mini-jets"-type:

- Uses PYTHIA.
- Need optimisation of generator-level cuts.
- Produced at SLAC this week. On grid soon after.
- $t\bar{t}$ at 500 GeV(\Leftrightarrow 6 fermions).:
 - Done at 1 TeV (as background to ννh).
 - At 500: Need new beam-spectrum, with waist-shift rather than travelling focus.
 - As GuineaPig simulation is done (T. Hartin), only need processing to produce spectrum-input for whizard (T. Barklow)
- 2f and 4f backgrounds to $t\bar{t}$ at 500 GeV:
 - Will be done (by M.B.) as soon as the new beam-spectrum files are available. Takes < 1 week.

- High $p_T \gamma \gamma$ of "mini-jets"-type:
 - Uses PYTHIA.
 - Need optimisation of generator-level cuts.
 - Produced at SLAC this week. On grid soon after.
- $t\bar{t}$ at 500 GeV(\Leftrightarrow 6 fermions).:
 - Done at 1 TeV (as background to $\nu\nu h$).
 - At 500: Need new beam-spectrum, with waist-shift rather than travelling focus.
 - As GuineaPig simulation is done (T. Hartin), only need processing to produce spectrum-input for whizard (T. Barklow)
- 2f and 4f backgrounds to $t\bar{t}$ at 500 GeV:
 - Will be done (by M.B.) as soon as the new beam-spectrum files are available. Takes < 1 week.

- After receiving the final beam-parameters at Christmas, the DBD bench-mark generation is soon complete:
- *t*th is done.
- Beam-strahlung background is done, both at 1 TeV and 500 GeV.
- WW with it's backgrounds is done.
- $\nu\nu h$ with it's backgrounds is done, but not yet on the grid.
- $\gamma\gamma$ backgrounds (both low and high p_T) are done, but not yet on the grid.
- "mini-jets" will be produced at SLAC by the end of the week, and on the grid soon after.
- $t\bar{t}$ at 500 GeV (and other 6 fermions) is lagging behind, but should be done in a few weeks
- 2- and 4-fermions at 500 GeV can be done in a week, once the beam-spectrum files for the new parameters are in place.

Mikael Berggren (DESY-HH)

- After receiving the final beam-parameters at Christmas, the DBD bench-mark generation is soon complete:
- tth is done.
- Beam-strahlung background is done, both at 1 TeV and 500 GeV.
- WW with it's backgrounds is done.
- $\nu\nu h$ with it's backgrounds is done, but not yet on the grid.
- $\gamma\gamma$ backgrounds (both low and high p_T) are done, but not yet on the grid.
- "mini-jets" will be produced at SLAC by the end of the week, and on the grid soon after.
- $t\bar{t}$ at 500 GeV (and other 6 fermions) is lagging behind, but should be done in a few weeks
- 2- and 4-fermions at 500 GeV can be done in a week, once the beam-spectrum files for the new parameters are in place.

Mikael Berggren (DESY-HH)

- After receiving the final beam-parameters at Christmas, the DBD bench-mark generation is soon complete:
- tth is done.
- Beam-strahlung background is done, both at 1 TeV and 500 GeV.
- WW with it's backgrounds is done.
- $\nu\nu h$ with it's backgrounds is done, but not yet on the grid.
- $\gamma\gamma$ backgrounds (both low and high p_T) are done, but not yet on the grid.
- "mini-jets" will be produced at SLAC by the end of the week, and on the grid soon after.
- $t\bar{t}$ at 500 GeV (and other 6 fermions) is lagging behind, but should be done in a few weeks
- 2- and 4-fermions at 500 GeV can be done in a week, once the beam-spectrum files for the new parameters are in place.

Mikael Berggren (DESY-HH)

- After receiving the final beam-parameters at Christmas, the DBD bench-mark generation is soon complete:
- tth is done.
- Beam-strahlung background is done, both at 1 TeV and 500 GeV.
- WW with it's backgrounds is done.
- $\nu\nu h$ with it's backgrounds is done, but not yet on the grid.
- γγ backgrounds (both low and high p_T) are done, but not yet on the grid.
- "mini-jets" will be produced at SLAC by the end of the week, and on the grid soon after.
- $t\bar{t}$ at 500 GeV (and other 6 fermions) is lagging behind, but should be done in a few weeks
- 2- and 4-fermions at 500 GeV can be done in a week, once the beam-spectrum files for the new parameters are in place.

Mikael Berggren (DESY-HH)

- After receiving the final beam-parameters at Christmas, the DBD bench-mark generation is soon complete:
- tth is done.
- Beam-strahlung background is done, both at 1 TeV and 500 GeV.
- WW with it's backgrounds is done.
- $\nu\nu h$ with it's backgrounds is done, but not yet on the grid.
- γγ backgrounds (both low and high p_T) are done, but not yet on the grid.
- "mini-jets" will be produced at SLAC by the end of the week, and on the grid soon after.
- $t\bar{t}$ at 500 GeV (and other 6 fermions) is lagging behind, but should be done in a few weeks
- 2- and 4-fermions at 500 GeV can be done in a week, once the beam-spectrum files for the new parameters are in place.

Mikael Berggren (DESY-HH)

- After receiving the final beam-parameters at Christmas, the DBD bench-mark generation is soon complete:
- tth is done.
- Beam-strahlung background is done, both at 1 TeV and 500 GeV.
- WW with it's backgrounds is done.
- $\nu\nu h$ with it's backgrounds is done, but not yet on the grid.
- γγ backgrounds (both low and high p_T) are done, but not yet on the grid.
- "mini-jets" will be produced at SLAC by the end of the week, and on the grid soon after.
- $t\bar{t}$ at 500 GeV (and other 6 fermions) is lagging behind, but should be done in a few weeks
- 2- and 4-fermions at 500 GeV can be done in a week, once the beam-spectrum files for the new parameters are in place.

Mikael Berggren (DESY-HH)

- After receiving the final beam-parameters at Christmas, the DBD bench-mark generation is soon complete:
- tth is done.

• Beam-strahlung background is done. both at 1 TeV and 500 GeV. File locations:

Sub-directories of:

lfn:/grid/ilc/prod/ilc/mc-dbd/generated/1000-B1b_ws/ lfn:/grid/ilc/prod/ilc/mc-dbd/generated/xxx-TDR_ws/ (xxx=250, 350, 500)

mini jeta win be produced at orno by the end of the week, and

Information on samples:

http://ilcsoft.desy.de/dbd/generated/

• 2- and 4-fermions at 500 GeV can be done in a week, once the beam-spectrum files for the new parameters are in place.

Mikael Berggren (DESY-HH)