Status of CMOS Pixel Sensor Development for the VXD at 500 GeV and 1 TeV

M. Winter (PICSEL team of IPHC-Strasbourg)

- Sensor design : coll. with IRFU-Saclay -- Ladder design : PLUME coll. - STAR coll. - ALICE coll. - CBM coll.

Kyushu Univ./Fukuoka – 23 May 2012

Contents

- VXD concept based on CMOS Pixel Sensors (CPS)
- Status of CPS and ladder developments (500 GeV running)
- Developments for 1 TeV running
 - \hookrightarrow fast CMOS sensor (AROM) with μs level timestamping
- Plans until 2015
- Summary

CMOS Pixel Sensors for the ILD-VXD

• Two types of CMOS Pixel Sensors (CPS):

★ Inner layers (≤ 300 cm²): priority to read-out speed & spatial resolution
→ small pixels (16×16 / 80 µm²) with binary charge encoding
→ t_{r.o.} ~ 50 / 10 µs; σ_{sp} ≤ 3 / 6 µm
★ Outer layers (~ 3000 cm²): priority to power consumption and good resolution
→ large pixels (35×35 µm²) with 3-4 bits charge encoding

 \hookrightarrow t_{r.o.} ~ 100 μs ; $\sigma_{sp} \lesssim$ 4 μm

* Total VXD instantaneous/average power < 700/15 W (0.35 μm process)

 \hookrightarrow < 600/12 W (0.18 μm process)

- 2-sided ladder concept for inner layer :
 - * Square pixels (16×16 μm^2) on internal ladder face (σ_{sp} < 3 μm)
 - & Elongated pixels (16×64/80 μm^2) on external ladder face (t $_{r.o.}$ \sim 10 μs)
- Sensor final prototypes : fabricated in Q4/2011
 - *** MIMOSA-30:** inner layer prototype with 2-sided read-out $\triangleright \triangleright \triangleright$
 - \hookrightarrow one side : 256 pixels (16×16 μm^2)

other side : 64 pixels (16imes64 μm^2)

* MIMOSA-31: outer layer prototype

 \hookrightarrow 48 col. of 64 pixels (35imes35 μm^2) ended with 4-bit ADC

 \triangleright

 \triangleright

CMOS Pixel Sensors: Status of Baseline Devt

- - * in-pixel CDS, rolling shutter read-out, binary sparsified output
 - * columns scale \simeq final sensor (4-5 mm long)
 - * high resolution side : pixels of 16×16 $\mu m^2 \Rrightarrow~$ expect $\sigma_{sp} <$ 3 μm
 - 128 columns (discri) & 8 col. (analog) of 256 rows
 - read-out time \lesssim 50 μs
 - * time stamping side : pixels of 16×64 μm^2 \Rightarrow $t_{r.o.}$ ~ 10 μs
 - (expect $\sigma_{sp}\sim$ 6 μm)
 - 128 columns (discri) and 8 col. (analog) of 64 rows
 - * lab tests positive : N \sim 15 e $^-$ ENC & discri. all OK for $t_{r.o.} = 10~\mu s$

* beam tests (CERN-SPS) in June/July '12 $\Rightarrow \sigma_{sp}, \epsilon_{det}$, fake rate

MIMOSA-31: prototype for ILD-VXD outer layers

* pixels of 35×35 μm^2 (power saving)

* 48 columns of 64 pixels ended with 4-bit ADC (1/10 of full scale chip)

 \hookrightarrow expect $\sigma_{sp}\lesssim$ 3.5 μm

st $t_{r.o.}$ \sim 10 μs (1/10 of full scale chip ightarrow \sim 100 μs)

* beam tests (DESY) in Q1/2013 $\Rightarrow \sigma_{sp}, \epsilon_{det}$, fake rate

 \triangleright

Status of Ladder Developments

- PLUME prototype-2010 tested at SPS in Nov. 2011:
 - * 1st PLUME ladder prototype (0.6 % X_0)
 - \hookrightarrow 6 MIMO-26 (50 μm) on each side (8 Mpix, 2 Gb/s)
 - * Preliminary results : no X-talk observed
 - \hookrightarrow combined impact res. (20 % improvmt) & pointing resolution (2 mrad)

- New PLUME proto. being fabricated with 0.35% X0 (X-section) → beam tests in Q4/2012
- Other developments :
 - * SERNWIETE : unsupported ladder with \leq 0.15 % X $_0 \rightarrow$ operational prototype under evaluation
 - * STAR-PXL : under construction

* ALICE-ITS: CDR option

Read-Out Acceleration

- Motivations
 - * robustness w.r.t. predicted 500 GeV BG rate (keep small inner radius, no Anti-DID, ..)
 - * standalone inner tracking capability (e.g. soft tracks)
 - * compatibility with high-energy running: beam BG at $\sqrt{s}\gtrsim$ 1 TeV
 - \hookrightarrow beam BG (\gtrsim 1 TeV) 5×BG (500 GeV) ?
- How to accelerate the elongated pixel read-out
 - * elongated pixel dimensions allow for in-pixel discriminators \Rightarrow 2 faster r.o. $\triangleright \triangleright$
 - * read out simultaneously 2 or 4 rows \Rightarrow 2-4 faster r.o./side
 - * subdivide pixel area in 4-8 sub-arrays read out in // \Rightarrow 2-4 faster r.o./side
 - $\triangleright~$ 0.18 μm CMOS process needed
 - \hookrightarrow 6-7 ML,, design compactness, in-pixel CMOS T, ...
 - * conservative step: 2 discri./column **end** (22 μm wide) \Rightarrow read out 2 rows simultaneously \hookrightarrow 1st stage improvement: 50/10 $\mu s \mapsto 25/5 \mu s$ (works even with 0.35 μm technology)

0.18 μm Technology Prototyping

seed

500

400

300

100

entri 200 \triangleright

Chip1C

Chip1C 3Mrad

200

ADC counts

 \triangleright

- **MIMOSA-32**: technology exploration
 - * fabricated in Q4/2011 with high resistivity epitaxial layer
 - * numerous different pixels (sensing syst., pre-ampli., elongated pix.), etc.
 - * lab tests under way (⁵⁵Fe source) :
 - good charge coll. eff. observed (high-res epi)
 - no parasitic charge coll. seen with Deep P-well
 - $N \sim 15-18 e^-$ ENC
 - irradiation up to 3 MRad has marginal impact
 - difficult to model in-pixel circuitry
 - * beam tests foreseen in June-July '12
- **Next steps**
 - MIMO-22THR1 \equiv MIMO-30 translation **☆ Q4:** •
 - MIMO-22THR2 \equiv id. but 2-discri/col.
 - AROM-1 \equiv Accelerated Read-Out MIMOSA sensor
 - \rightarrow prototype with in-pixel discrimination
 - SUZE-02 \equiv Zero-Suppression & output buffer circuit ٠
 - sparsification: 4 rows simultaneous r.o. \rightarrow
 - * 2013: first full scale (1 cm²) sensor fabrication
 - final full size proto. in 2014/15 (ALICE, CBM, AIDA)

Characteristics & Variants of MIMOSA & AROM Sensors

• Assuming MIMOSA and AROM variants to equip innermost and outer layers

* MIMOSA-in and AROM-1 equip innermost layers

* MIMOSA-out and AROM-2 equip outer layers

Sensor version	MIMOSA-in	MIMOSA-out	AROM-1	AROM-2
Active area dimensions $[mm^2]$	8.7×31.0	19.6×31.0	10.9×31.0	20.8×31.0
Pixel dimensions $[\mu m^2]$	17×17	34×34	17×85	34×72
Single point resolution $[\mu m]$	\lesssim 3	\lesssim 4	5-7	\sim 10
Read-out time $[\mu s]$	50	\sim 100	1.5	7
Power consumption: instantaneous [W]	\sim 1.8	\sim 0.6	2.7	0.7
average [mW]	36	12	55	14

• Expected VXD performances at 1 TeV (and 0.5 TeV)

Layer	σ_{sp}	t_{int}	Occupancy [%]	Power
	MIMOSA/AROM	MIMOSA/AROM	1 TeV (0.5 TeV)	inst./average
VXD-1	3 / 5-6 μm	50 / 2 μs (10 μs)	4.5(0.9) / 0.5(0.1)	250/5 W
VXD-2	4 / 10 μm	100 / 7 μs (100 μs)	1.5(0.3) / 0.2(0.04)	120/2.4 W
VXD-3	4 / 10 μm	100 / 7 μs (100 μs)	0.3(0.06) / 0.05(0.01)	200/4 W

SUMMARY

- CPS architecture is ready to be adapted to all VXD sensor specifications at \sqrt{s} =500 GeV :
 - architecture based on sensors realised for EUDET-BT and STAR-PXL (0.35 μm CMOS process)
 - relies on 2-sided ladder concept \Rightarrow hit resolution/timestamp on opposite ladder sides (PLUME project)
 - innermost layer : < 3 μm and \lesssim 10 μs (upgradable to \lesssim 5 μs with 2 discri/col)
 - outer layers : \lesssim 3.5 μm (ADCs not yet tested) and \sim 100 μs
 - VXD power consumption : < 700 W (inst.) / < 15 W (average) \rightarrow 20% less with 0.18 μm technology
 - final prototypes fabricated \Rightarrow tests under way : MIMOSA-30(in) & MIMOSA-31(out)
 - validation of concept \pm completed in 2012 with 2-sided ladder (PLUME) offering 0.35 % X $_0$ (X-section)
- Translation 0.35 $\mu m
 ightarrow$ 0.18 μm CMOS under way for $\sqrt{s}\gtrsim$ 1 TeV :
 - benefits: read-out < 2/10 μs (inner/outer layers), > 20% less power, throughput, pixelated SIT ?, ...
 - exploratory chip (MIMOSA-32) under test
 - mid-scale prototypes validating architecture planned for submission in Q4/2012
 - Full Scale Basic Block (FSBB 1 cm^2 active area) expected to be fabricated in 2013
 - \Rightarrow Final (full scale) prototype in 2014/15
 - synergy with AIDA-SALAT, ALICE-ITS & -MFT, CMB-MVD, ...

Measured Spatial Resolution

- Compare position of impact on sensor surface predicted with BT to hit reconstructed with sensor under test : clusters reconstructed with eta-function, exploiting charge sharing between pixels
- Impact of pixel pitch (analog output) : $rac{1}{}$ ho
 ho
 ho $\sigma_{
 m sp} \sim 1 \ \mu m$ (10 μm pitch) $ightarrow \lesssim 3 \ \mu m$ (40 μm pitch)

• Impact of charge encoding resolution :

-		
\triangleright	ex. of 20 μm pitch \Rightarrow	σ^{digi}_{sp} = pitch/ $\sqrt{12}$ \sim 5.7 μm

Nb of bits	12	3-4	1
Data	measured	reprocessed	measured
σ_{sp}	\lesssim 1.5 μm	\lesssim 2 μm	\lesssim 3.5 μm

7 8

9 10 11 12

Threshold (S/N)

5 6

 $\triangleright \triangleright \triangleright$

Towards a Large Pitch

- Large pitch : Motivations
 - * elongated pixels allow faster read-out

```
times trackers (e.g. ILD-SIT) require \sigma_{sp}\gtrsim 10 \mu m
```

- \Rightarrow minimise number of pixels for the sake of power dissipation, integration time and data flow
- Large pitch : Limitations (besides spatial resolution)
 - * DANGER: increasing distance inbetween neighbouring diodes
 - \Rightarrow particles traversing sensor "far" from sensing diodes may not be detected because of e⁻ recombination
 - * "fragile" detection efficiency, exposed to losses due to irradiation, high temperature operation & "slow" read-out
- Elongated pixels : Test results
 - * elongated pixels allow minimising the drawbacks of large pitch
 - * concept evaluated with MIMOSA-22AHR prototype, composed of a sub-array with 18.4×73.6 μm^2 pixels $\triangleright \triangleright \triangleright$
 - times m.i.p. detection performances assessed at CERN-SPS (T \sim 15 $^{\circ}$ C)
 - --- $\epsilon_{det}\sim$ 99.8 %
 - $ightarrow \sigma_{sp}\sim$ 5-6 μm (binary charge encoding)
- Square pixels : prototype back from foundry
 - * MIMOSA-29 : fabricated on high-resistivity epitaxy in Summer '11 * pixels of 64×16/32/64 μm^2 and 80×16/48/80 μm^2
 - * chips back from foundry \Rightarrow test preparation under way $_{10}$

Sensor Integration in Ultra Light Devices

- 2-sided ladders with time stamping for the ILD-VXD :
 - * manyfold bonus expected from 2-sided ladders:
 - compactness, alignment, pointing accuracy (shallow angle), redundancy, etc.
 - * studied by PLUME coll. (Oxford, Bristol, DESY, IPHC) & AIDA (EU)
 - Pixelated Ladder using Ultra-light Material Embedding
 - * square pixels for single point resolution on beam side
 - * elongated pixels for 4-5 times shorter r.o. time on other side
 - * correlate hits generated by traversing particles
 - $\textit{\texttt{*}}$ expected total material budget \sim 0.3 % X_{0}
 - \hookrightarrow 1st proto. (0.6 % X₀) fabricated & operationnal
 - ▷ beam tests at CERN-SPS (traversing m.i.p.) in Nov. '11
- Unsupported ladders (Hadron Physics 2 / FP-7)
 - * 50 μm thin CMOS sensors embedded in thin kapton and cabled with redistributed connections \rightarrow suited to curved surfaces ?
 - * expected total material budget \lesssim 0.15 % X $_0$
 - * 1st single sensor mechanical prototype fabricated
 - * 1st 3-sensor electrical proto. expected by Summer 2012

Final

2-Sided Ladder Beam Test Results

• PLUME prototype-2010 tested at SPS in Nov. 2011:

- * Beam telescope : 2 arms, each composed of 2 MIMOSA-26 sensors
- * DUT : 1 PLUME ladder prototype (0.6 % X_0)
 - \hookrightarrow 6 MIMOSA-26 sensors on each ladder face (> 8 Mpixels)
- * CERN-SPS beam : \gtrsim 100 GeV " π^- " beam
- st BT (track extrapolation) resolution on DUT \sim 1.8 μm
- * Studies with PLUME perpendicular and inclined (\sim 36°) w.r.t. beam line

* Preliminary results (no pick-up observed): combined impact resolution & pointing resolution

• New PLUME proto. under construction with 0.35 % X_0 (X-sect.) \rightarrow beam tests in Q4/2012 (SPS ?)

Preliminary 0.18 μm Process Test Results

- MIMOSA-32 lab tests (⁵⁵Fe source) of pixel matrix with analog output \rightarrow Very preliminary results :
 - * Read-out time of each sub-matrix = 32 μs
 - * Observed CCE (20imes20 μm^2 pixels) :
 - $_{\circ}\,$ seed pixel : \sim 40–50 % $\qquad \ \ \triangleright \ \ \triangleright \ \ \triangleright$
 - \circ 2×2 pixel cluster : nearly 100 % \triangleright \triangleright \triangleright
 - \Rightarrow confirms Epi. layer 1-5 $k\Omega \cdot cm$
 - No parasitic charge coll. seen with Deep P-well
 - $\circ\,$ CCE of 20imes40 μm^2 pixels
 - $\hookrightarrow\,$ seed \sim 30 % and with 1st crown \sim 75 %
 - * Noise \sim 16-18 e⁻ ENC at 20°C
 - * Irradiation: 0.4/1/3 MRad $\rightarrow \sim$ no effect up to 35°C (tbc !)

- * Difficult to find operating regime of in-pixel ampli. due to inaccurate simul. **models** \Rightarrow pixel design optimisation?
- Next 2012 steps :
 - * Beam tests of pixel matrix foreseen in June-July 2012 (incl. NI radiation tolerance assessment)
 - * Lab and beam tests of digital matrix through Summer 2012
 - * Lab tests of in-pixel discriminator array in Q3-Q4/2012 (tbc)
 - * MIMOSA-32bis fab. in Spring'12 with standard epitaxial layer \rightarrow lab tests in Summer 2012
 - * Submission of MIMOSA-32ter (July 2012) with alternative in-pixel amplification schemes

MISTRAL: 0.18 μm Architecture Prototyping

- 1st step : MISTRAL \equiv Mimosa for the Inner Silicon TRacker of ALice
- MIMOSA-22THR (Upstream part of sensor) :
 - * Col. // pixel array with in-pixel ampli + pedestral subtraction (cDS)
 - * Each of 128 columns ended with discriminator + 8 columns without discri.
 - * Pixel array sub-divided in sub-arrays featuring different pixel designs (22×22/44 μm^2)
 - * 2 options \rightarrow submission in Octobre'12 :
 - \circ end of column discriminator \equiv translation of MIMOSA-22AHR (0.35 techno.)
 - \circ simultaneous 2-row encoding & 2 discriminators/column \Rightarrow twice faster
- AROM-1 (Accelerated Read-Out Mimosa)
 - * in-pixel discri. & simultaneous 4-row encoding \Rightarrow 8 times faster than MIMOSA-22THR
 - * submission in Octobre'12
- SUZE-02 (Downstream part of sensor) :
 - * Ø $\mu\text{-circuits}$ & output buffers (= SUZE-01)
 - add filter L0 info after discriminators for data flow & power reduction
 - * add 2nd filter downstream of output buffers
 for further data flow & power compression
 - * submission in Octobre'12

MISTRAL : Final Steps

- FSBB (Full Scale Basic Block) : 2013
 - * Composition :
 - ightarrow Pixel array with \sim final pixel design (\sim 1 cm 2)
 - $-\infty$ Final r.o. circuitry (\emptyset , filtering, data transmission, ...)
 - → All read-out circuitry split in elementary blocks
 according to stitching design rules → AIDA-BT
 - * Submission : Summer 2013 (?)
- MISTRAL : 2014 ?
 - * Composition :
 - 3 full-size adjacent FSBB (1-sided read-out)
 or 6 half FSBB (2-sided read-out)
 - -- Complemented with serial r.o. circuitry
 - * Submission : Summer 2014 (?)
- Start MIMAIDA & MIMOSIS designs (+ others ?) :
 - \hookrightarrow submission in 2015

AIDA Project : Assessment of Stitching & 2-Sided Ladder

• Single Arm Large Area Telescope (SALAT) :

- st 2048imes3072 pixels (\sim 20 μm pitch)
 - \Rightarrow 4×6 cm² sensitive area, \sim 3.5 μm spatial resolution
- * requires combining several reticules (based on FSBB)
 - \Rightarrow stitching process \Rightarrow establish proof of principle
- st 2-sided read-out of 1024 rows in \sim 200 μs
 - \Rightarrow 3 planes of Large Area Telescope for AIDA project (EU-FP7)
- st windowing of \lesssim 1imes6 cm 2 (collimated beam)
 - \Rightarrow \sim 50 μs r.o. time
- * 50-100 μm pitch variants under consideration (trackers)

• Alignment Investigation Device (AID) :

- * box allowing to mount 3-4 pairs of ladders arranged in 3-4 consecutive layers \equiv VTX sector
- * can be equipped with PLUME (2-sided) ladders
- * ladders mounted on movable micrometric supports
 - ⇒ investigate alignment with particles traversing overlapping regions of neighbouring ladders
- * allows developing clustering, tracking & vertexing algo. with particle beams

	standingly strandingly	Ministerial) Ministerial)	analogia Strategia	MINISTER (MINISTERNA)	analogia Strategia	MENTERING SERVICES
	BZNS	BZOS	EZAS	BZOS	EZAS	BZAS
	eroteniminaeiC	leroteniminoeiC	Siscriminators	ProteniminaeiC	ProteniminaziC	ProteniminaeiC
	212×213	213×213	213×213	915×915	212×212	212×212
Discriminators	213×219	215*215	213×213	612×612	612×612	212x212
512x512	512x512	512x512	512x512	512x512	512x512	512x512
Discriminators	512x512	512x512	512x512	512x512	512x512	512x512
CI17E	Discriminators	Discriminators	Discriminators	Discriminators	Discriminators	Discriminators
SUZE	SUZE	SUZE	SUZE	SUZE	SUZE	SUZE
(emore (emore)	Manager (fantoers)		Vannonnik Vannonnik	Contractor Montractor		Contrate Contrate

VXD - SIT Variant Composed of CPS

- ILD-SIT : baseline assumes 2 double-sided μ strip detector layers
 - * try understanding if CMOS sensors could improve performance with their high spatial resolution
 - * advantage : spatial resolution \vartriangleright 4×4 μm^2 instead of 7×50 μm^2
 - \Rightarrow improved soft track reconstruction (p) and TPC link
 - potentially : material budget, cost
 - * disadvantage : time resolution \triangleright 7 μs instead of O(100)ns Is power a pb ?
- Variant of VXD–SIT design made of CMOS pixel sensors (other variants give similar performances)

Layer	σ_{sp}	t_{int}	Occupancy [%]	Power
	MIMOSA/AROM	MIMOSA/AROM	w/o safey factor	inst./average
VXD-1	3 / 5-6 μm	50 / 2 μs	0.9(2.6) / 0.1(0.3)	250/5 W
VXD-2	4 / 10 μm	100 / 7 μs	0.3(0.9) / 0.04(0.1)	120/2.4 W
VXD-3	4 / 10 μm	100 / 7 μs	0.06(0.2) / 0.01(0.03)	200/4 W
SIT-1	4 / 15 μm	100 / 7 μs	\lesssim 0.01	\sim 1.3 kW/26 W
SIT-2	4 μm	100 μs	\lesssim 0.01	\sim 2.5 kW/50 W

- ILD-SIT : power consumption (average \lesssim 100 W for \gtrsim 4 m 2 coverage) seems affordable
 - \Rightarrow need benchmark event study with beam BG to evaluate track reconstruction performance

Tracking through ILD-VXD

• Tracking from outside towards IP combining MIMOSA spatial resolution & AROM timestamp

* AROM provides 2 or 7 μs time stamping

