ILD Vertex Detector

Y. Sugimoto 2012/5/24 ILD Workshop @Fukuoka

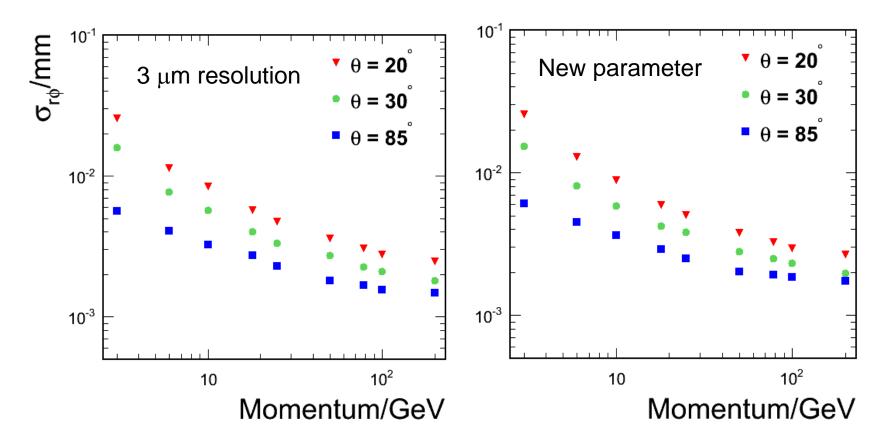
Outline

- Performance goal
- Baseline design
 - Design parameters
 - Pixel technology options
 - Ladders
 - Support structure
 - Cooling system
 - Installation and alignment
- Future prospects
 - Detector upgrade with beam energy
 - R&D needed

Performance goal

- Excellent impact parameter resolution $\sigma_{IP} < 5 \oplus 10/psin^{3/2}\theta \ [\mu m]$
- Large acceptance max |cosθ| ≅ 0.96 (L1–L3) ≅ 0.9 (outermost layer)
- Low pixel occupancy: ≤few%

Design parameters

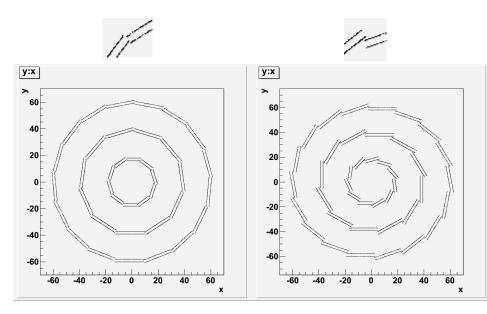

- Overall design
 - Each ladder has sensors on both sides ~2 mm apart
 - Three layers of the double-sided ladders make the vertex detector
 - Rin = 16 mm, Rout = 60 mm
 - Material budget ~ $0.3\%X_0$ /ladder = $0.15\%X_0$ /layer
- Software baseline parameters
 - Conservative parameters which have been demonstrated or seem within our reach will be used
 - It should be noted that the MOKKA simulation model is independent of sensor technology option
 - Difference in sensor technologies (point resolution, etc.) matters only in digitization and reconstruction phase, or in the background study

Design parameters

	R (mm)	Z (mm)	cosθ	σ (μm)	Readout time (μs) (for CMOS)
Layer 1	16	62.5	0.97	2.8	50
Layer 2	18	62.5	0.96	6	10
Layer 3	37	125	0.96	4	100
Layer 4	39	125	0.95	4	100
Layer 5	58	125	0.91	4	100
Layer 6	60	125	0.90	4	100

Design parameters

- Impact parameter resolution
 - Difference is very small


Pixel technology options

- Three sensor technology options seem to satisfy the requirements and are studied actively
 - CMOS
 - FPCCD
 - DEPFET
- Details of each sensor technologies will be presented in different talks later
- Each technology has pros and cons
 - Hybrid design using different sensor options in one vertex detector is not excluded
- Alternative technology options for future upgrade
 - ISIS
 - 3D sensors

Ladders

- Baseline design
 - Rigid foam (SiC or C) core sandwiched by thin (50µm) Si sensors
 - SiC core option is actively studied by PLUME collaboration
 - Carbon core option is proposed by FPCCD group
- Alternative design
 - Single sided ladders (5 layers) with or without (DEPFET) support
- Ladder overlapping in the baseline design
 - Two possible ways: layer by layer or ladder by ladder
 - Layer by layer overlapping will be used in the simulation

	Width (mm)	# of ladders
Layer 1,2	11	10
Layer 3,4	22	11
Layer 5,6	22	17

Support structure

Beryllium shell

0.5 t

41.5

146

164.6

0.5t

- Design in ILD simulation model
 - Similar to SLD vertex detector
 - 2 mm thick Be end plate, 0.5 mm thick Be support shell
 - Kapton+Cu flexible cables

Layer 3: 17 ladders

Layer 2: 11 ladders

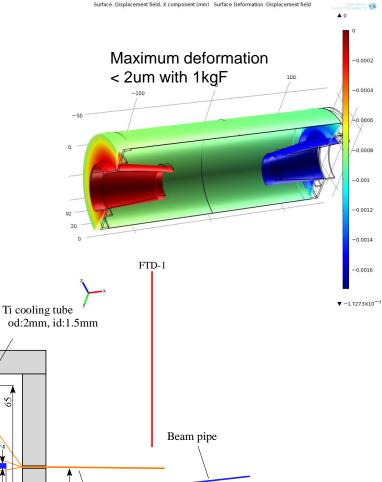
Laver 1: 10 ladders

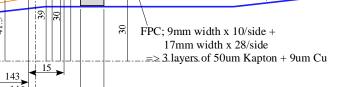
Ladders

59.6

- 1 cm thick foam of the cryostat

Cryostat; 0.2mm CFRP+1cm styrofoam+0.2mm CFRP


Annulus block: 1mm CFRP


Ladder block; 1.5mm CFRP

82.

20.5

73

Cooling system

- Two-phase CO2 cooling system
 - Cooling power of ~300J/g
 - Thin (OD~2mm) cooling tube on the end plate
 - Studied by FPCCD group (P>50W inside the cryostat): target temperature = -40°C
- Gas cooling system
 - Applicable for low power consumption sensors

Installation and alignment

- Installation
 - ILD vertex detector is supported by the beam pipe, and the beam pipe is supported by the inner support tube
 - Integrated to ILD detector as a part of the "inner Si trackers" inside the inner support tube
- Alignment
 - Pre-alignment by optical survey during assembly
 - Precise alignment is achieved by beam-base alignment

Detector upgrade with energy

- Vertex detector is relatively easy to replace
- Detector upgrade with energy upgrade is reasonable
- Particularly at 1TeV where beam background is expected to increase by factor 5, new sensor technologies with much shorter readout time could be used
 → R&D should be continued

R&D needed

- R&D towards the baseline design
- R&D for better performance
- What R&D should be put in the common chapter?
- Detail will be discussed in each option talk