## **LCFIPlus**

T. Tanabe, T. Suehara ICEPP, The University of Tokyo

May 23, 2012 ILD Workshop @ Kyushu University

## Introduction

NIM A 610 573 (2009)

#### **LCFIVertex**

- vertex finder & flavor tagger for LOI
- neural net difficult to extend



arXiv:1110.5785

### Jet Finding

- need to improve for multijet events
- vertex first, jet second approach



#### **LCFIPlus**

- vertex finding, jet finding, flavor tagger in one package
- \* exploit TMVA
- \* flexible XML configuration

Included in ilcsoft since v01-13

## Data Flow

EventStore singleton for data pool

vector<Vertex\*> vector<Track\*> vector<Jet\*> vector<Neutral\*> etc vector<MCParticle\*>

- Automatic type identification (Allow one name with multiple types)
- Automatic creation/deletion (using ROOT class dictionary)



### **Algorithm**

PrimaryVertex JetVertexRefiner BuildUpVertex FlavorTag TrainMVA JetClustering MakeNtuple ReadMVA etc.

 Parameters class used for type-safe configuration All in "Icfiplus" namespace



### **LCIOStorer**

- Automatic conversion from LCIO to Icfiplus classes (using hook in EventStore)
- Conversion to LCIO is manually invoked by LcfiplusProcessor



## LcfiplusProcessor

- Marlin processor
- Process Marlin parameters to be passed to Algorithm
- LCIO I/O configuration



Independent

# LCFIPlus Algorithms



# Vertex Finding

#### **Primary Vertex Finder**

- Two kernels are implemented:
  - Kalman filter calls LCFIVertex
  - Teardown type
- Uses beamspot constraint

#### Secondary Vertex Finder

- Implemented kernels are:
  - ZVTOP (LCFIVertex) needs jet direction and cannot be used
  - Build-up type computationally intensive
- Build-up VF has been tuned to be as efficient as ZVTOP and with higher purity
- V0 finding applied (outputs dedicated list)
- Some problems were observed in the covariance matrix:
  - Lacking floating point precision (KF)
  - Indication of convergence problems (TD)
  - Vertex positions look OK
  - Need to be fixed a.s.a.p. before mass production starts
- Need to decide on the behavior when no primary vertices are found (due to too few tracks passing the quality selection)
  - Return "beamspot" vertex?
- T. Tanabe How to pass on the information to LCIO? PIDHandlers on Vertex?

# Single Track Pseudo-Vertex



- Normal vertex finder needs at least 2 tracks – information of 1 track decay is lost.
- Given a secondary vertex, look for a single track pseudovertex.
- This has been shown to improve b-tagging.

| Event      | 0 vtx | 1 vtx | >= 2 vtx  |
|------------|-------|-------|-----------|
| bb normal  | 322   | 1052  | 426(24%)  |
| bb +single | 322   | 459   | 1019(57%) |
| cc normal  | 1003  | 779   | 18(1.0%)  |
| cc +single | 1003  | 715   | 82(4.6%)  |

#### arXiv:1110.5785

# Jet Finding (Vertex-Assisted)



1. Difficult to separate two b-jets which are close. Ordinary kt algorithm tends to merge them.



- 2. To overcome this, find secondary vertices first using all tracks in the event, and use them as *seeds* for jet finding.
- 3. Results in an increased chance of correct jet separation. This effect is pronounced in final states with many b jets. Vertex/Jet association are further refined after the jets are identified.

CAUTION: Be careful when applying this algorithm to backgrounds with different number of fermions, as it can enhance the background! (e.g. with gluon emissions  $g^* \rightarrow bb$ ) Consider using multiple number of jets and/or conventional kt algorithm as complementary information.

# Flavor Tagging

- Essentially an interface to TMVA
  - multiclass training → get c-tag for free!
  - boosted decision trees (BDT) with gradient boost gives nice output classifiers
- Normalization of input variables → less dependent of jet energy
- Example list of input variables (can be configured by Marlin steering file)

| nvtx=0  | trk1d0sig trk2d0sig trk1z0sig trk2z0sig trk1pt_jete trk2pt_jete jprobr jprob                                                                                |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| nvtx=1  | vtxlen1_jete vtxsig1_jete vtxdirang1_jete vtxmom1_jete vtxmass1 vtxmult1 vtxmasspc vtxprob (+ above)                                                        |  |
| nvtx>=2 | vtxlen2_jete vtxsig2_jete vtxdirang2_jete vtxmom2_jete vtxmass2 vtxmult2 vtxlen12_jete vtxsig12_jete vtxdirang12_jete vtxmom_jete vtxmass vtxmult (+ above) |  |



#### Marlin steering XML

### Download weight files and template XML from repository

### User analysis code (Marlin processor)

```
LCCollection* colJet = evt->getCollection("RefinedJets");
PIDHandler pidh( colJet ); // get PIDHandler associated with jet collection
int algo = pidh.getAlgorithmID( "Icfiplus"); // get algorithm ID
int ibtag = pidh.getParameterIndex(algo, "BTag"); // similarly for CTag

// loop over jets to extract flavor tagging information
for(int i=0; i < colJet->getNumberOfElements(); i++) {
    ReconstructedParticle *part =
        dynamic_cast<ReconstructedParticle*>( colJet->getElementAt( i ) );
    const ParticleID &pid = pidh.getParticleID(part, algo);
    cout << "btag = " << pid.getParameters()[ibtag] << endl;
}
```

# b-tag and c-tag



This is for Z->qq sample at Ecm=91.2GeV.

Improvement of b/c separation in all efficiency range

Performance of b/uds separation still needs to be understood

T. Tanabe

# Performance in 6-jet environment



LCFIVertex
2 jet training on 6 jet sample

LCFIPlus

2 jet training on 6 jet sample

LCFIPlus
6 jet training on 6 jet sample

Training and testing performed using 6f samples with 6b, 6c, and 6q with q=uds.

Improvement over old algorithm seen in all regions.

Performance in high efficiency region still needs to be understood.

## Documentation & Feedback

- Doxygen class reference
- User feedback + documentation system hosted at SLAC (J. Strube + N. Graf):
  - Documentation wiki hosted at SLAC
    - bug tracker (JIRA) also available
  - https://confluence.slac.stanford.edu/display/ilc/LCFIPlus
    - some documentation present
- Early bug reports (J. Engels, F. Gaede, J. Strube, A. Sailer)
- Nightly builds and check input variables at CERN (J. Strube)
- Feedback and support from LC community has been very helpful during initial deployment of LCFIPlus

## Summary and Outlook

- Software infrastructure now in place for ILD DBD production
  - complied with technical requests, included in the latest ilcsoft v01-13-06
- Some issues still need to be ironed out
  - repository for training weight files
  - covariance matrix of vertex fitter
  - better understanding of TMVA behavior
  - optimization for 1 TeV
- Continue working with whole LC community for a smooth transition from LCFIVertex to LCFIPlus
- Vertex charge: next target, needed e.g. by ttbar analysis

# backup slides

# Jet/Vertex Refining Strategy

- Apply V0 rejection on secondary vertices
  - K-short, Lambda0, photon conversions
    - properly computed using track parameters at the vertex
    - BuildUpVertex produces V0 vertex list
- Vertex clustering
  - no more than two vertices per jet (excluding V0)
  - if too many vertices are present, they get combined by using measures based on angle/distance
- Refit all vertices as a single vertex, merge them if the fit is good

# Training vs. Testing



We use independent samples to evaluate the performance of the training.