
LCFIPlus

T. Tanabe, T. Suehara

ICEPP, The University of Tokyo

May 23, 2012

ILD Workshop @ Kyushu University

T. Tanabe 1

Introduction

LCFIPlus

 vertex finding, jet finding,

flavor tagger in one package

 exploit TMVA

 flexible XML configuration Jet Finding

 need to improve for multi-

jet events

 vertex first, jet second

approach

LCFIVertex

 vertex finder & flavor

tagger for LOI

 neural net difficult to

extend

Included in ilcsoft since v01-13

NIM A 610 573 (2009)

arXiv:1110.5785

Development driven by need to improve Zhh analysis T. Tanabe 2

Data Flow
All in “lcfiplus” namespace

EventStore

vector<Track*>

vector<Neutral*>

vector<MCParticle*>

singleton for data pool

vector<Vertex*>

vector<Jet*>

etc

• Automatic type identification

 (Allow one name with multiple types)

• Automatic creation/deletion

 (using ROOT class dictionary)

Algorithm

Internal algorithms

PrimaryVertex

BuildUpVertex

JetClustering

JetVertexRefiner

FlavorTag

MakeNtuple
TrainMVA

ReadMVA etc.

• Parameters class used

 for type-safe configuration

LCIO

LCIOStorer

• Automatic conversion from

 LCIO to lcfiplus classes

 (using hook in EventStore)

• Conversion to LCIO

 is manually invoked by

 LcfiplusProcessor

LcfiplusProcessor

• Marlin processor

• Process Marlin parameters

 to be passed to Algorithm

• LCIO I/O configuration

configuration

Marlin Independent T. Tanabe 3

LCFIPlus Algorithms

Make
Ntuple

Train MVA

Read MVA

Lcfiplus
Processor

Primary
Vertex
Finder

Build Up
Vertex

Jet
Clustering

Flavor Tag

Vertex finders

Jet finding using
vertex information

Preparation of
training variables

Output ROOT files
used for training

Create training
weight files

Apply result of
training as
PIDHandler

Marlin processor

* small circle = LCFIPlus algorithm
Individual algorithms can be run on its
own Marlin processor: useful for
preprocessing data for fast development

Primary
Vertex
Finder

Build Up
Vertex

Jet
Clusterin

g

Flavor
Tag

Read
MVA

Train
MVA

Make
Ntuple

Procedure:

user analysis T. Tanabe 4

Vertex Finding
Primary Vertex Finder
• Two kernels are implemented:

• Kalman filter - calls LCFIVertex
• Teardown type

• Uses beamspot constraint

Secondary Vertex Finder
• Implemented kernels are:

• ZVTOP (LCFIVertex) - needs jet
direction and cannot be used

• Build-up type - computationally
intensive

• Build-up VF has been tuned to be as
efficient as ZVTOP and with higher purity

• V0 finding applied (outputs dedicated list)

• Some problems were observed in the covariance matrix:
• Lacking floating point precision (KF)
• Indication of convergence problems (TD)
• Vertex positions look OK
• Need to be fixed a.s.a.p. before mass production starts

• Need to decide on the behavior when no primary vertices are found
(due to too few tracks passing the quality selection)
• Return “beamspot” vertex?
• How to pass on the information to LCIO? PIDHandlers on Vertex? T. Tanabe 5

• Normal vertex finder needs at
least 2 tracks – information of
1 track decay is lost.

• Given a secondary vertex,
look for a single track pseudo-
vertex.

• This has been shown to
improve b-tagging.

Single Track Pseudo-Vertex

IP

Secondary vertex

Single track pseudo-vertex

(nearest point)

Vertex-IP

line

track

D

q

Event 0 vtx 1 vtx >= 2 vtx

bb normal 322 1052 426(24%)

bb +single 322 459 1019(57%)

cc normal 1003 779 18(1.0%)

cc +single 1003 715 82(4.6%)
T. Tanabe 6

1. Difficult to separate two b-jets which are close.
Ordinary kt algorithm tends to merge them.

2. To overcome this, find secondary vertices
first using all tracks in the event, and use
them as seeds for jet finding.

3. Results in an increased chance of correct
jet separation. This effect is pronounced in
final states with many b jets.
Vertex/Jet association are further refined
after the jets are identified.

sec. vtx.

pri. vtx.

Jet Finding (Vertex-Assisted) arXiv:1110.5785

CAUTION: Be careful when applying this algorithm to backgrounds with different number
of fermions, as it can enhance the background! (e.g. with gluon emissions g*  bb)
Consider using multiple number of jets and/or conventional kt algorithm as
complementary information. T. Tanabe 7

Flavor Tagging
• Essentially an interface to TMVA

– multiclass training  get c-tag for free!

– boosted decision trees (BDT) with gradient boost gives nice output classifiers
• Normalization of input variables  less dependent of jet energy

• Example list of input variables (can be configured by Marlin steering file)

x Ejet

IP
SV

momentum

direction
q

q* = q/g ∝ q/Ejet

nvtx=0 trk1d0sig trk2d0sig trk1z0sig trk2z0sig trk1pt_jete trk2pt_jete jprobr jprob

nvtx=1 vtxlen1_jete vtxsig1_jete vtxdirang1_jete vtxmom1_jete vtxmass1 vtxmult1 vtxmasspc vtxprob (+ above)

nvtx>=2
vtxlen2_jete vtxsig2_jete vtxdirang2_jete vtxmom2_jete vtxmass2 vtxmult2 vtxlen12_jete vtxsig12_jete vtxdirang12_jete vtxmom_jete

vtxmass vtxmult (+ above)

91.2GeV
200 GeV
500 GeV

T. Tanabe 8

LCCollection* colJet = evt->getCollection(”RefinedJets");

PIDHandler pidh(colJet); // get PIDHandler associated with jet collection

int algo = pidh.getAlgorithmID("lcfiplus"); // get algorithm ID

int ibtag = pidh.getParameterIndex(algo, "BTag"); // similarly for CTag

// loop over jets to extract flavor tagging information

for(int i=0; i < colJet->getNumberOfElements(); i++) {

 ReconstructedParticle *part =

 dynamic_cast<ReconstructedParticle*>(colJet->getElementAt(i));

 const ParticleID &pid = pidh.getParticleID(part, algo);

 cout << "btag = " << pid.getParameters()[ibtag] << endl;

}

<processor name="JetClusteringAndFlavorTag" type="LcfiplusProcessor”>

 <parameter name="Algorithms" type="stringVec"> JetClustering JetVertexRefiner FlavorTag ReadMVA</parameter>

 <parameter name="PFOCollection" type="string" value="PandoraPFOs" />

 <parameter name="JetClustering.InputVertexCollectionName" type="string" value="BuildUpVertex" />

 <parameter name="JetClustering.OutputJetCollectionName" type="stringVec" value="VertexJets" />

 <parameter name="JetClustering.NJetsRequested" type="intVec" value="6" />

 <parameter name="PrimaryVertexCollectionName" type="string" value="PrimaryVertex" />

 <parameter name="FlavorTag.JetCollectionName" type="string" value="RefinedJets" />

 <parameter name="FlavorTag.WeightsDirectory" type="string" value="lcfiweights" />

 <!-- include flavor tagging definitions here, must match the weight files -->

</processor>

Marlin steering XML

User analysis code (Marlin processor)

Download weight files and template XML from repository

Contains result of flavor tagging
T. Tanabe 9

b-tag and c-tag

This is for Z->qq sample at Ecm=91.2GeV.
Improvement of b/c separation in all efficiency range
Performance of b/uds separation still needs to be understood

T. Tanabe 10

Performance in 6-jet environment

LCFIVertex
2 jet training on 6 jet sample

LCFIPlus
2 jet training on 6 jet sample

LCFIPlus
6 jet training on 6 jet sample

Improvement over old algorithm seen in all regions.
Performance in high efficiency region still needs to be understood.

Training and testing performed
using 6f samples with 6b, 6c, and
6q with q=uds.

T. Tanabe 11

Documentation & Feedback

• Doxygen class reference

• User feedback + documentation system hosted at SLAC (J. Strube +
N. Graf):

– Documentation wiki hosted at SLAC

• bug tracker (JIRA) also available

– https://confluence.slac.stanford.edu/display/ilc/LCFIPlus

• some documentation present

• Early bug reports (J. Engels, F. Gaede, J. Strube, A. Sailer)

• Nightly builds and check input variables at CERN (J. Strube)

• Feedback and support from LC community has been very helpful
during initial deployment of LCFIPlus

T. Tanabe 12

https://confluence.slac.stanford.edu/display/ilc/LCFIPlus
https://confluence.slac.stanford.edu/display/ilc/LCFIPlus

Summary and Outlook

• Software infrastructure now in place for ILD DBD production
– complied with technical requests, included in the latest ilcsoft v01-13-06

• Some issues still need to be ironed out
– repository for training weight files

– covariance matrix of vertex fitter

– better understanding of TMVA behavior

– optimization for 1 TeV

• Continue working with whole LC community for a smooth transition
from LCFIVertex to LCFIPlus

• Vertex charge: next target, needed e.g. by ttbar analysis

T. Tanabe 13

backup slides

T. Tanabe 14

Jet/Vertex Refining Strategy

• Apply V0 rejection on secondary vertices

– K-short, Lambda0, photon conversions

• properly computed using track parameters at the vertex

• BuildUpVertex produces V0 vertex list

• Vertex clustering

– no more than two vertices per jet (excluding V0)

– if too many vertices are present, they get combined by using measures
based on angle/distance

• Refit all vertices as a single vertex, merge them if the fit is good

T. Tanabe 15

Training vs. Testing

We use independent samples to evaluate the
performance of the training.

T. Tanabe 16

