FPCCD option

Yasuhiro Sugimoto 2012/5/24 ILD Workshop @Fukuoka

Features of FPCCD option

- Fine pixels of $\sim 5\mu m$
 - Excellent spatial resolution (1.4 μ m with digital readout, ~1 μ m with analog readout)
 - Larger pixel size is acceptable for outer layers
- Fully depleted epitaxial layer of ~15 μ m thick
 - Suppress the charge spread and the number of hit pixels
 - Excellent two-track separation
 - Pair-background rejection by cluster shape
- Reasonably low pixel occupancy even with accumulation of hit signals in one train
- Read out between trains
 - Completely free from beam-induced RF noise
 - No need for power pulsing
- Large chip (22x125 mm²) can be fabricated

Spatial resolution

Simulation study for analog readout

Impact parameter resolution

- Impact parameter resolution in $R-\phi$
 - Significant improvement in high momentum region

Pixel occupancy

- 500 GeV simulation
 - Detector model: ILD_01pre02
 - Data statistics: 1600 BX
 - 1312 BX/train
- 1 TeV simulation
 - Detector model: ILD_O1_v02
 - Data statistics: 20 BX
 - 2450 BX/train
- Both cases
 - Signal threshold cut of >200 electrons/pixel

Layer	500 GeV (sb2009wTF) [%]	1 TeV [%]
1	3.1	15.5
2	1.7	7.8
3	0.09	0.67
4	0.07	0.36
5	0.017	0.12
6	0.015	0.094

Sensor R&D status

- Small prototypes 4 times
 - 6x6mm² image area
 - 4ch/chip
 - Gain: 5µV/electron
 - FY2008: 12 μ m pixel
 - FY2009: 12 μm pixel
 - FY2010: 12, 9.6, 8, 6 μm pixels
 - FY2011: 12, 9.6, 8, 6 μm pixels, 50μm thick
- Wafer thinning
 - Thinning down to 50 μm is an established technology

Sensor R&D status

- Large prototype in FY2012
 - 12.3x62.4mm² image area
 - 12, 8, 6 μ m pixel size
 - 8ch/chip (4ch: 6μm, 2ch: 8μm, 2ch:12μm)
 - Gain: 5µV/electron
 - Layout: almost completed
 - Delivered in October (before DBD deadline)

Readout ASIC R&D

- Prototype ASICs 3 times
 - Preamp+LPF+CDS+ADC
 - 8ch/chip
 - Charge sharing ADCs of 7 bit resolution
 - − Two 5MHz ADCs/ch \rightarrow 10MHz/ch
 - Power consumption target: < 6mW/ch

	1st	2nd	3rd
Process [µm]	0.35	0.35	0.25
Speed	X	<u> </u>	○ 2)
Power consumption [mW/ch]	30	30	5.4 ²⁾
Linearity	× 3)	<u> </u>	<u> </u>

- 1) Emitter follower is needed between CCD and ASIC
- 2) Post-layout simulation results
- 3) Discontinuity in ADC output
- 4) Slightly S-shape

Readout ASIC R&D

- 3rd prototype ASIC
 - Layout completed
 - Post-layout simulation and verification underway
 - Submitted in June and will be delivered in August

Test with Fe55 & Sr90

- FPCCD 2008 + 2nd ASIC
- Fe55 X-ray test
 - Operated at -40°C and 2.5 Mpix/s
 - 5.9 keV and 6.5 keV peaks are observed
 - S/N>40 for 1630 electrons (5.9 keV peak/pedestal width) before nonlinearity correction
- Sr90 β-ray test
 - Operated at ~10 °C and 2.5 Mpix/s
 - Charge spread to the adjacent pixels is small

10

Peripheral circuits

- Pig-tail cables (FPC) come out from the cryostat
- Junction box near the cryostat
- The electronics circuit in the junction box includes CCD clock drivers, clock timing generators, signal processors for data reduction, optical fiber cable drivers, etc.
- The junction box (PCBs) are placed surrounding beam pipe
- Patch panel outside the inner support tube

CO2 cooling system

- Operation temperature and power
 - -40°C from the radiation immunity point of view
 - > 50 W inside cryostat
- Cold nitrogen gas
 - Flow rate of ~1 L/s is necessary to extract 50W power with $\Delta T{=}40K$
 - Thick cooling tube would be necessary
- Two-phase CO2
 - Flow rate of ~0.15 g/s is necessary to extract 50W power with Δ T~0K (latent heat)
 - Thin tube is OK \rightarrow
 - Less material budget
 - Less space needed between forward Si disks and beam pipe

CO2 cooling system

- Cooling tube is attached to VTX end-plate and heat produced by CCD output amp and ASIC is removed by conduction through CFRP ladder (simulation study for thermal design is necessary)
- Return line of CO2 will be used to cool the electronics outside the cryostat (~200W/side)
- Inner support tube should be air-tight and filled with dry air/nitrogen in order to prevent condensation on the CO2 tube

R&D plan

- FPCCD sensor and readout ASIC
 - Large prototype sensor + 3rd ASIC → Demonstrate to work by the DBD deadline
 - Beam tests to confirm σ ~1µm: 2013~2014
 - Radiation immunity test: 2013~2015
- Engineering R&D
 - Circulating 2-phase CO2 cooling system using a CO2 compressor and condenser : 2012~2014
 - Possibility of one compressor system for all subdetectors (-40°C - +15°C)
 - Full-size engineering prototype: 2014~2015