Overview	Content	Summary
00	000 0000 00000	0
	00000	

DBD Physics Chapter: Status & Plans

Jenny List

DESY Hamburg

ILD Workshop, May 23-25 2012 on behalf of the editors of the DBD Physics Chapter

Overview oo oo	Content 000 0000 00000 00000	Summary O

Outline of this presentation

Overview

Purpose & Scope Structure & Timeline

Content of the Sections

Summary

Overview ●0 ○○	Content 000 00000 00000 00000	Summary O

Purpose & Scope

Purpose of the DBD Physics Chapter

- present the up-to-date Physics Case of the ILC, especially in view of the LHC results
- provide material for the European Strategy process (and later others)
- independent of detector concepts
- but specific to ILC make clear that we need to build and can build this machine NOW.

Overview ⊙ ○○	Content 000 0000 00000	Summary O
Purpose & Scope		

Relation to the detector-specific DBD parts

- Physics Chapter will not describe any analysis in detail
- Physics Chapter is not restricted to full simulation results
- Physics Chapter will concentrate on $\sqrt{s} \leq 500$ GeV
- results important to the physics case (full sim, fast sim, pheno) will be included
- old (JLC, NLC, TESLA, ?) results will be included where no updates are available
- new ILD analyses which are not described in detail in the ILD specific part should be written up as note / paper to be "citable"
- For core topics covered by new full sim analyses (e.g. the Higgs self-coupling, BRs) there will be overlap - however PhysChap will just quote result, not describe analysis

Overview ○ ● O	Content 000 00000 00000 00000	Summary O

Structure & Timeline

Structure — overall editor: Michael Peskin

8 sections with 10-15 pages each:

- Introduction (Jae Yu, Michael Peskin)
- ▶ W and Z Boson Physics (Tim Barklow, Jürgen Reuter)
- Two-Fermion Processes (Yuanning Gao, Maxim Perelstein)
- Top Quark (Roman Pöschl, Andrei Nomerotski, Andre Hoang)
- Standard Model Higgs (Keisuke Fujii, Heather Logan)
- Extended Higgs (Aurore Savoy-Navarro, Shinya Kanemura)
- Supersymmetry (JL, Howard Baer)
- Cosmological Connection (Geraldine Servant, Tim Tait)

order will be changed to have SM Higgs directly after introduction!

Overview ○○ ○●	Content 000 00000 00000 00000	Summary O

Structure & Timeline

Timeline

by June 15: submit the section drafts \rightarrow still useful as resource to the Le Diberder group writing the common ILC/CLIC physics input to the European Strategy

until ICHEP: Iterate among editors and with "ILC friendly" referees after ICHEP: open draft to public, solicit signatures (JL: shouldn't this be coordinated with whole DBD?) by July 31: deadline for European Strategy Open Meeting until Oct 15: possibility to

- adjust to new results (e.g. presented at SUSY 2012,....)
- collect further signatures!

Overview oo oo	Content ● 00 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Summary O
Intro 4- and 2-Fermions		

1. Introduction (Yu, Peskin)

- Physics at the ILC
- Advantages of e^+e^- Colliders
 - "Cleanliness": low backgrounds, no trigger, point-like particles
 - "Democracy": em coupling roughly the same for all fermions
 - ► "Calculability": LO already precise to O%, with effort subpermille theory predictions
 - "Detail": full event reconstruction, polarisation, spin reconstruction in decays
- Key Physics Explorations at the ILC: Overview of following sections

Overview oo oo	Content ⊙⊙⊙ ○○○○ ○○○○○ ○○○○○	Summary O

Intro, 4- and 2-Fermions

2. W and Z Boson Physics (Barklow, Reuter)

- ► $e^+e^- \rightarrow W^+W^-$
 - cross section systematics
 - measurement of triple gauge boson couplings
 - Standard Model reference e.g. in situ polarization measurement

►
$$e^+e^- \rightarrow ZZ$$

- $\blacktriangleright \ \gamma\gamma \to W^+W^$
 - measurement of quadruple gauge boson couplings
- ► WW, ZZ scattering at high energy
- ► Giga-Z
 - measurement of the Z polarization asymmetry and $\sin^2 \theta_w$
 - reconciliation of precision electroweak with new particle spectra
 - other high-luminosity Z studies

Overview OO OO	Content 00● 0000 00000 00000	Summary O
Intro 4- and 2-Fermions		

3. Two-Fermion Processes (Gao, Perelstein)

- Systematics of $e^+e^- \rightarrow f\bar{f}$: Observables available in $e^+e^- \rightarrow f\bar{f}$, polarization and flavor analysis
- Z' physics
 - Varieties of Z' models, and motivations for Z'
 - Measurement of Z' couplings
- Extra Dimensions
 - Flat Extra Dimensions
 - Large Extra Dimensions
 - Randall-Sundrum Warped Extra Dimensions
 - Relation of Extra Dimensios and Composite Higgs
- Contact Interactions
 - Quark and Lepton Compositeness
 - Other sources of contact interactions

Overview oo oo	Content ○○○ ●○○○ ○○○○○ ○○○○○	Summary O
Top Quark		

4. Top Quark (Pöschl, Nomerotski, Hoang)

based on Top Physics workshop in Paris last week, material from S. Heinemeyer, M. Stahlhofen, F. Simon, J. A. Aguilar-Saavedra, M. Vos, K. Ikematsu

- Introuction
 - guaranteed physics, fundamental SM parameters
 - ► large mass, especial role in ew symmetry breaking → window to new physics?
 - ► radiative corrections: non-decoupling effects ~ powers of m_t ⇒ need m_t very precisely to have sensitivity to new physics!

Overview oo oo	Content ○○○ ○●○○ ○○○○○ ○○○○○	Summary O
Top Quark		

4. Top Quark (Pöschl, Nomerotski, Hoang)

- Top Quark Properties from Hadron Colliders
 - mass:
 - systematic limited (JES, MC modelling), getting significantly below 1 GeV is tough
 - theoretical uncertainties (scheme dependence etc)
 - width, W helicity
 - anomalous moments
 - Top Yukawa coupling
 - Top coupling to Z, A_{FB}^t : tension with SM?

Overview oo oo	Content ○○○ ○○●○ ○○○○ ○○○○○	Summary O

Top Quark

4. Top Quark cont'd

- $e^+e^- \rightarrow t\bar{t}$ at Threshold
 - Status of QCD Theory, significantly improved cross-section (NNLL, Hoang'11)
 - Precision measurement of mass (and width): 10 points à 10 fb⁻¹ ⇒ δm_t(stat) ≈ 30 MeV (F. Simon)
 - Precision measurement of top quark form factors

Overview oo oo	Content ○○○ ○○○○ ○○○○○ ○○○○○	Summary O

Top Quark

4. Top Quark cont'd

• $e^+e^-
ightarrow t ar{t}$ at 500 GeV and above

- Observables of the process
- top quark form factors
- Measurment of the top Yukawa coupling
- $\mathcal{A}_{
 m FB}$, $\mathcal{A}_{
 m LR}
 ightarrow Z'$ up to 10 TeV
- model discrimation, beam polarisation!
- Models with Top and Higgs Compositeness
 - Predictions for top quark couplings and form factors
 - Relevance of the ILC measurements

Overview	Content	Summary
00 00	000 0000 00000 00000	0
Higgs Physics		

5. Standard Model Higgs (Fujii, Logan; Peskin)

- The Standard Model Higgs mechanism
 - SM Higgs mechanism
 - contrast of the simple SM with other possible models (multiple Higgs, composite Higgs), possibility of multiple symmetry-breaking condensates
 - overview of the Higgs couplings in terms of the roles of the Higgs; central role of the HWW, HZZ couplings (and sum rule), discussion of the Higgs-fermion couplings
 - brief discussion of ways these couplings are modified in extended models, to provide motivation for their precision measurement.

Overview oo oo	Content ○○○ ○●○○○ ○●○○○	Summary O
Higgs Physics		

5. Standard Model Higgs cont'd

- Status and prospects for Higgs measurements at LHC (JL: reallistic number only available after Cracow meeting!)
 - review Higgs mass, quantum number, and coupling measurement prospects (including theoretical uncertainties)
 - current LHC running/future run plan (especially related to number of interactions per bunch crossing) and implications for, e.g., VBF
 - prospects for measurement of the *Hbb* coupling
 - prospects for measurement of the triple Higgs coupling

Overview oo oo	Content ○○○ ○○○○ ○○○○ ○○○○○	Summary O
Higgs Physics		

5. Standard Model Higgs cont'd

- Higgs measurements at ILC at 250 GeV
 - Mass and quantum numbers
 - inclusive Higgs cross section and the HZZ coupling
 - decay branching ratios in various modes, including invisible, $H \rightarrow \gamma \gamma$, $H \rightarrow \gamma Z$
 - coupling extraction, including model-independent techniques
 - comparison to theo. estimates in non-Standard Higgs models
- Higgs measurements at ILC at 500 GeV
 - top Yukawa
 - triple Higgs coupling
 - global analysis as of this point

Overview 00 00	Content ○○○ ○○○○ ○○○○ ○○○○○	Summary O
Higgs Physics		

5. Standard Model Higgs cont'd

► Higgs measurements at ILC at 1000 GeV (JL: include here 800 GeV?)

- Higgs coupling to $\mu^+\mu^-$
- top Yukawa
- triple Higgs coupling

 Conclusion: the complete phenomenological picture of the Higgs as generated at the ILC

Overview OO OO	Content ○○○ ○○○○ ○○○○ ○○○○	Summary O
Higgs Physics		

6. Extended Higgs Sectors (Savoy-Navarro, Kanemura)

- Structure of 2-Higgs Doublet Models
- $\blacktriangleright e^+e^- \rightarrow H^+H^-, H^0A^0$
- Singlet Higgs Bosons
- Measurement of $\tan \beta$

	Summary
00000	0

SUSY & Cosmology

7. SUSY (JL, Baer)

- motivations for SUSY
- summary of Higgs and SUSY searches at the LHC
- discussion of options in SUSY parameter space, especially of
 - "life beyond the cMSSM"
 - naturalness and "natural SUSY"
 - the independence of Higgsino, gaugino, slepton, squark, sfermion 3rd generation subsectors.
 - the implications of indirect constraints.
 - the implications of a 125 GeV Higgs, contributions from extended Higgs sector
 - possibilities for Dark Matter (cf cosmo section)
- \blacktriangleright presentation of spectra of \sim 3 different SUSY models not excluded at LHC

Overview 00 00	Content	Summary O

SUSY & Cosmology

Possibilities for example spectra

- 1. light Higgsinos optionally with one additional sparticle $(\tilde{\tau}, \tilde{t})$ \rightarrow "focus point"-like, e.g. Natural SUSY / Hidden SUSY / non-min GMSB
- light sleptons / gauginos with small mass differences (sim SPS1a', but heavy 1.+2.gen squarks & gluinos)
- NMSSM ? Kallosh-Linde (mixed AMSB - moduli mediation)? RPV? ...

Overview oo oo	Content	Summary O
SUSY & Cosmology		

7. SUSY cont'd

- ► ILC ≤ 500 GeV measurements: for each discuss precision on masses, polarised cross-sections, BRs from continuum and/or threshold
 - Electroweakinos: decay via gauge bosons, decay via sleptons, 3-body-decays, meta-stable
 - Sleptons
 - Stops and Sbottoms: decay via top, decay to charm
- Model discrimination / parameter determination, incl. specific measurements at 1000 GeV
 - Rich ILC scenarios: Sleptons, Electroweakinos, Stop
 - Only Electroweakinos
 - Electroweakinos + Stop or Stau
 - CPV
 - bRPV

Overview oo oo	Content ○○○ ○○○○○ ○○○○●○	Summary O
SUSY & Cosmology		

7. SUSY cont'd

 Conclusion: SUSY is far from excluded, many interesting possibilities remain, they feature important measurements in the SUSY-electroweak sector that can be done at the ILC 500.

Overview oo oo	Content ○○○ ○○○○ ○○○○ ○○○○●	Summary O
SUSY & Cosmology		

8. Cosmological Connections (Servant, Tait)

- Baryogenesis at the Electroweak Scale
 - Testing the nature of the EM phase transition: implications of 125 GeV Higgs
 - New sources of CP violation: status of constraints
 - what more could we learn with the ILC
- Dark Matter and the ILC
 - Status of dark matter: SUSY searches, effective theories, direct / indirect detection
 - Prospects for ILC determination of dark matter parameters (WIMPs)
 - Nonstandard WIMP dark matter: e.g. super-WIMPs, asymmetric dark matter, non-thermal production

Overview oo oo	Content 000 0000 00000 00000	Summary ●

Summary

Summary

- DBD Physics Chapter is underway
- will present the ILC specific physics case
- first complete draft by June 15
- publicly available after ICHEP
- finalize and collect signatures until October 15 (JL: for whole DBD probably longer? Coordination?)
- have a look at:

http://www.slac.stanford.edu/~mpeskin/PhysicsChapter.html

....and keep fingers crossed for a 5 σ Higgs signal by the end of the year – or even an additional surprise!