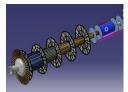
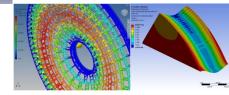

ILD discussion session

ILD status and plans

25.5.2012

The Steps towards the DBD


LOI detector



Technologies

Validation Scalability Simulation

Engineering design:

Criteria to be accepted as an option:

- Establish performance
- Validated simulation
- Operational experience
- Scalable technology solutions
- Open R&D issues

Conceptual design of the overall system with a focus on integration aspects

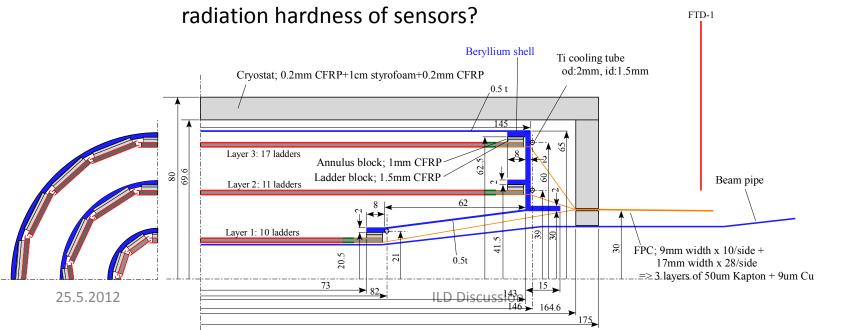
DBD detector

- Options
- Alternatives
- Issues

25.5.2012

ILD: baseline detector The current picture

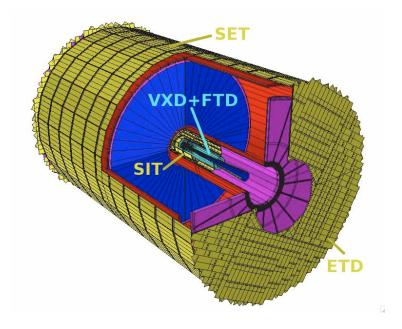
Vertex Detector

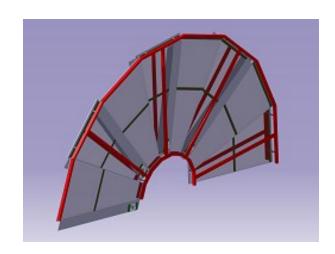

Three options are proposed:

- CMOS
- FPCCD
- DEPFET

Fairly mature common design of the detector, performance indepent of technology for sake of DBD

Issues: background occupancies

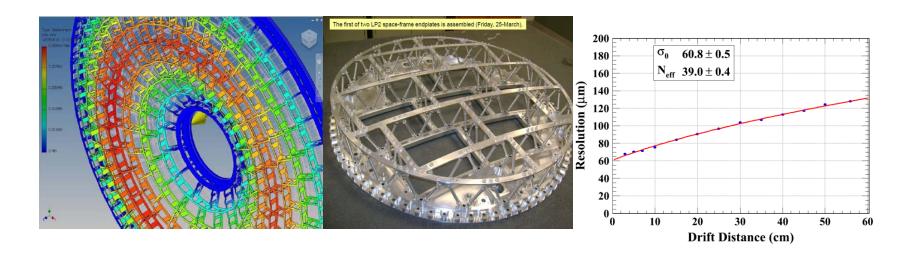

advantage of twin-layer structure has not really been demonstrated



Silicon tracking

Very complex, large area system

- Significant progress on the FTD design both mechanically and electrically
- Major problem of increase of material due to powering seems to have been solved for FTD
- Alignment system under design for FTD
- Need to make sure that SIT/ SET/ ETD are brought to comparable level
- Problem: design of the pixel layers in FTD, services for SIT



TPC

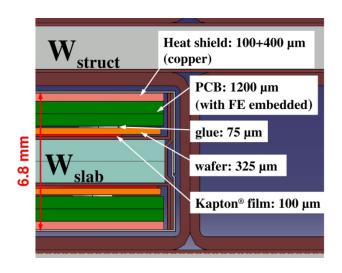
Design of the TPC is progressing:

- Much more realistic idea about endplate, fieldcage, suspension etc.
- Basic performance has been demonstrated
- Two options: GEM and Micromegas pad readout, one alternative: pixel readout

ECAL

Two technologies as baseline:

- Si-W (established)
- Scintillator W (nice to see progress)
- Role of Hybrid in the DBD?


Physics prototypes for both technologies

Many results available

Hopefully have some first results in time for DBD

Basic performance established transition from physics prototype to engineering prototype will not be finished for the DBD,

But many individual studies make design believable.

HCAL

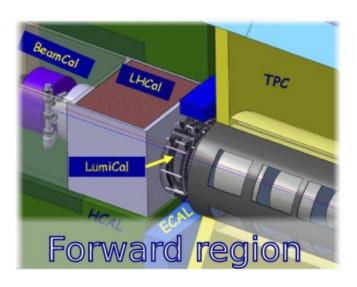
Two technologies, two geometries

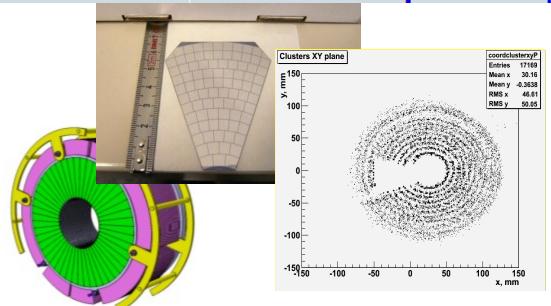
Significant systems for both have been demonstrated (SDHCAL real prototype, AHCAL physics prototype)

Data from both are available

- Great success for both AHCAL and SDHCAL groups
- Both will be available in the simulation

CALICE is preparing a document to document the input.

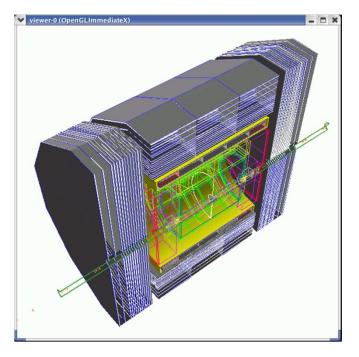

Module


FCAL/ Backgrounds

- Detailed design exist for the different components, except for SDHCAL
- Performance has been demonstrated and evaluated
- Need to urgently understand backgrounds as this will drive performance!

Pixel occupancy with new study

Layer	1TeV Without cut	1TeV With Cut	Sb2009wTF-500 w/ cut
1	20.1 %	15.5 %	3.079 %
2	10.1 %	7.79 %	1.74 %



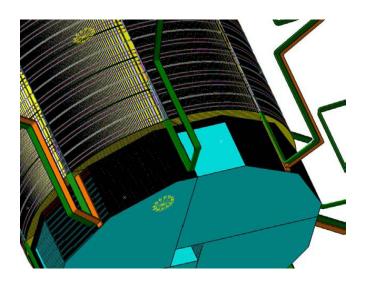
Muon

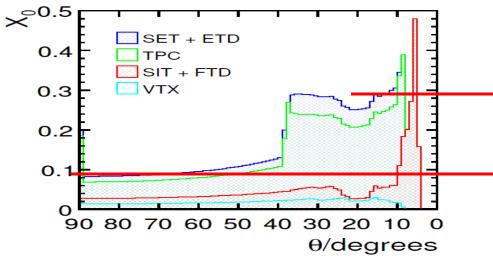
Baseline design exists, based on scintillator

- Proposal is strips, simulation has implemented tiles
- Due to manpower other options are not currently studied (RPC's in particular)
- Layout of muon system frozen, but not really optimized

Performance of the system has not really been demonstrated at this meeting.

Overall state less advanced than some others. But not really cirtical

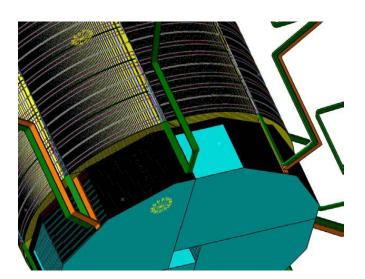

Overall Integration


Enormous amount of work by integration group on integrating the different systems into one real and coherent detector.

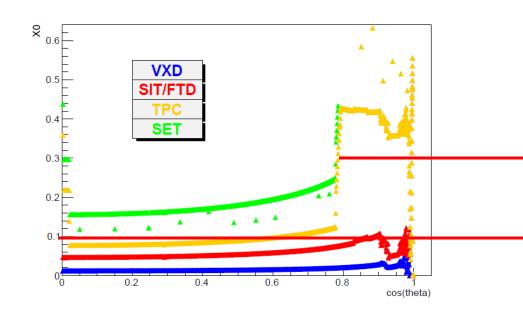
I think we have met our goal of being realistic.

Example of detailed integration study

Material budget in ILD as of LOI

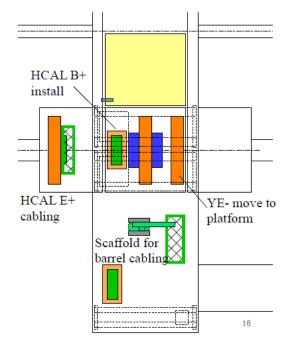


Overall Integration


Enormous amount of work by integration group on integrating the different systems into one real and coherent detector.

I think we have met our goal of being realistic.

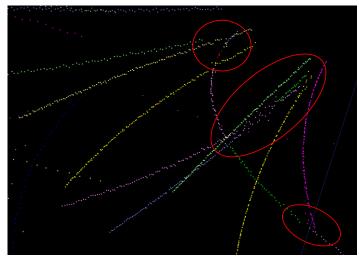
Example of detailed integration study


Material budget in ILD as of now

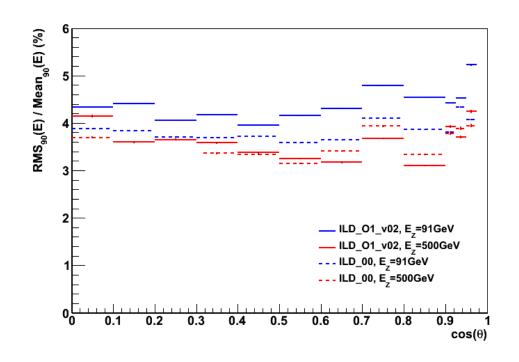
MDI

Concrete planning is ongoing and well advanced From ILD point of view solutions for both "flat" and "mountainous" site are possible

For Japanese site: access "crowding" seems a important point.


Simulation/ Reconstruction

detector	person	status
VXD	G.Voutsinas	done
SIT/SET	K.Androsov	done
FTD	J.Duarte	done
TPC	S.Aplin	done
ECal	D.Jeans	done
AHCal	Sh.Lu	done
SDHcal	G.Grenier	to be done
FCal	A.Rosca, B.Pawlik	done
Muon	V.Saveliev	ongoing


Simulation model for ILD mostly evaluated:

Nearly ready to start production of simulation samples

Complete re-write of the tracking: System is now being tuned.

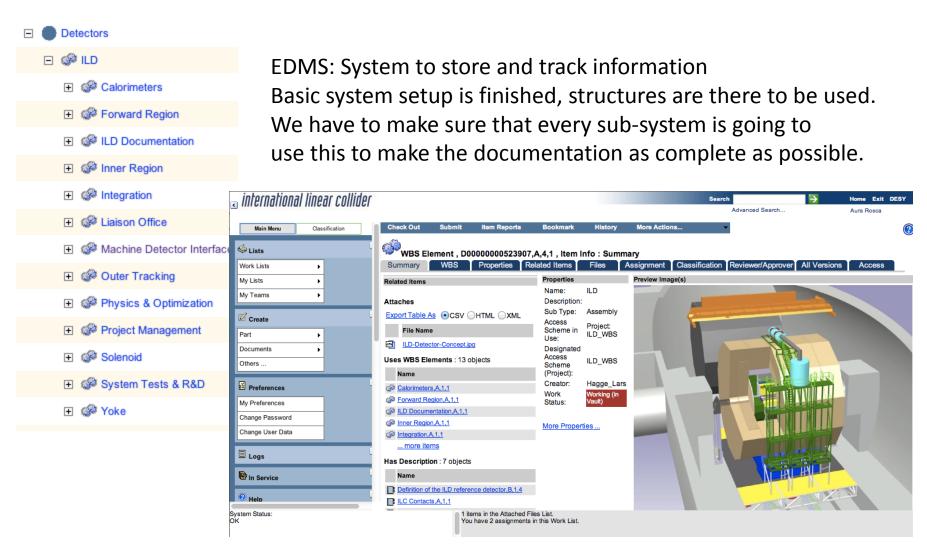
Particle Flow

Particle flow in the "DBD" detector:

- Basically works
- Performance not yet as good as old version, needs to be understood

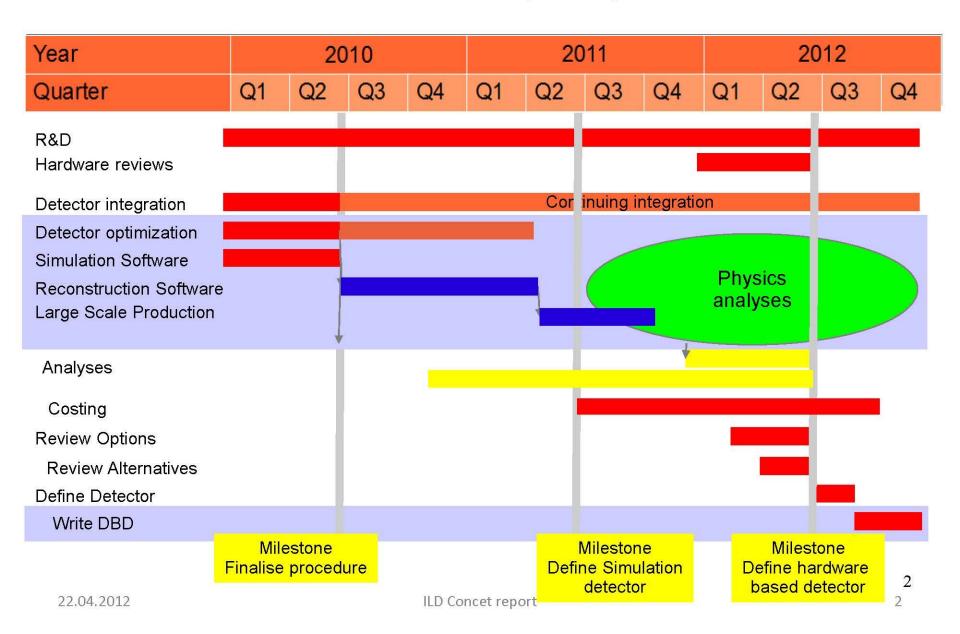
$RMS_{90}(E_j)/\langle E_j \rangle$	91GeV	500GeV	
ILD_00	3.69 ± 0.05 %	3.40 ± 0.05 %	
ILD_O1_v02	4.15 ± 0.05 %	3.48 ± 0.05 %	

Common / Central Systems

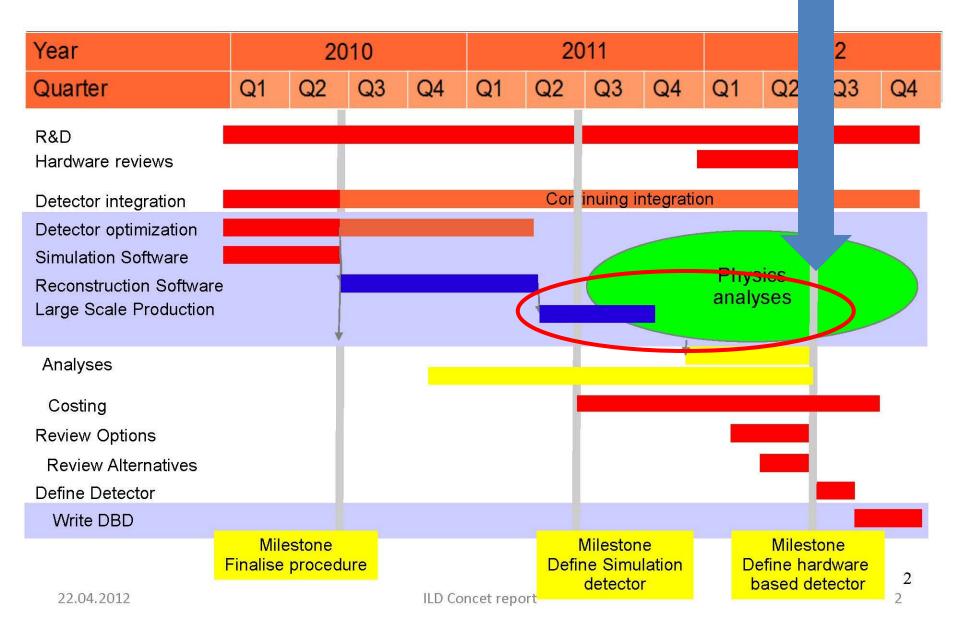

There are common issues which could profit from more collaboartion between sub-detectors:

- Alignment
- Cooling
- Power Pulsing
- Others?

An example: cooling systems


- Leakless cooling (water)
- Gas cooling C4F14?
- CO2 for the TPC?
- Silicon?
- VTX?

EDMS for ILD



Contact in ILD: Catherine Glerc and Aura Rosca (both are here, ask!)

ILD Timeline

Important Milestones

- Simulation baseline:
 - Code freeze: end of December 2011
 - Material description: end of January 2012
 - Validation: started February 2012
- Reconstruction code
 - Release December 2011
 - Software validation: January- May 2012: nearly finalized
- Start of mass production:
 - Planned for May/ June 2012: we are late!
- Towards the detector baseline
 - Discussions within the subdetector groups / R&D collaborations: -> May 2012
 - Discussions on baseline defitintion: ILD meeting May 2012
- Analyses
 - Final results during summer/ fall 2012: last deadline for contributions: LCWS2012 in Arlington

DBD milestones

- Define DBD outline: January 2012
- Define DBD editors and chapter editors: 15.2.2012
- Setup technical infrastructure etc.: 31.2.2012
- Extended outline: 30.3.2012

ACFA meeting March 2012: Present DBD sceleton to IDAG

- Start writing the "general" chapters: April 2012
- Deadline first draft for chapters: 30.6.2012
- Complete first draft for circulation: 30.8.2012
- First complete draft for review by IDAG: 30.9.2012
- Last possibility for "new" input: 15.11.2012
- Final draft for circulation: 15.12.2012

In particular the physics and results sections will be incomplete at this time!

DBD Philosophy

DBD should describe the ILD detector concept

- complete, not only an extension of the LOI
- Self contained with the exception of overall topics like push pull
- Due to the page restrictions cannot be too detailed: backup material?

Common sections:

- Push-pull and hall issues which are common with SiD
- Beam instrumentation issues: energy measurement, polarization
- "Generic" R&D on sub detectors

DBD Layout: Common issues

- **O. General Introduction of the Detailed Baseline Design document** (S. Yamada, 1 page)
- 1.0 Physics and detector performance of an e+e- Linear Collider up to 1 TeV center-of-mass energy (M. Peskin, J. Brau & H. Yamamoto, 12 pages)
 - **1.1 Physics reach** (M. Peskin, 7-8 pages)
 - **1.2 Detector challenges and technological requirements** (J. Brau, H. Yamamoto, 5-6 pages)
 - **1.3 The Physics and Detector Study of the International Linear Collider** (S. Yamada, 12 pages-mainly the same content as in the Interim Report)
- **2.0 Description of common tasks and common issues** (0,5-1 page)
 - **2.1 Detector R&D** (M. Demarteau, Wolfgang Lohman, 10 pages)
 - **2.2 Common simulation and software tools** (A. Miyamoto, N. Graf et al., 7-9 pages)
 - **2.3 Machine-detector interface** (K. Buesser,, M. Oriunno, Y. Sugimoto, T. Markiewicz 5-7 pages)

DBD Layout: Common Issues

- 2.4 Common engineering tools (C. Clerc, 2 pages)
- 2.5 Beam Instrumentation (2-3 pages) E. Torrence, M. Hildren, H. Yamamoto, J. List
- **2.6 Detector Costing and methodology** (1-2 pages)
- **3.0 The ILD detector concept** (150 pages)
- **4.0 The SiD detector concept** (150 pages)
- **5.0 Summary of the detector and physics study for the ILC** (2 pages)

Common Section: Comment

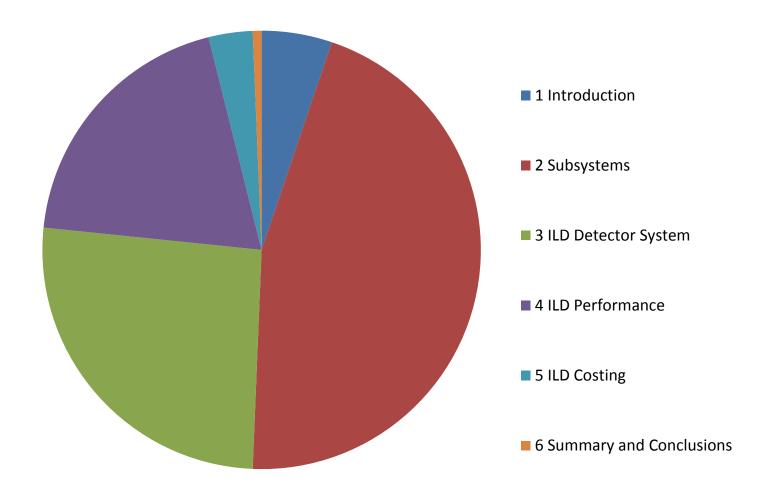
R&D Section potentially has large overlap with ILD section:

- Need to understand the sharing of information
- Need to coordinate this between ILD and SiD to have a consistent document

MDI Section: boundary is fairly clearly defined, detailed to be worked out.

General philosophy: (my personal bias, the official view is still evolving)

Common section should have the "generic" information, not specific Common section should be forward looking, describe potential significant new developments, not so much the work done over the last N years.


Overall ILD Structure

ILD (150 p)

- Introduction (5 p)
- Sub Detector Systems (70 p)
 - Technological discussion of the systems, including options and alternatives
 - System aspects as long as they are specific to this one system
- Detector integration (40 p)
 - Overall integration issues, mechanical concept
 - DAQ
 - Coil
- ILD Performance (30 p)

- Costing (5 p)
- Summary (1 p)

DBD layout

People

Editorial team:

- People are known, responsibilities have been assigned
- Extended outline has been submitted on time to IDAG

Readers board:

- Team of "senior" people not directly involved in the relevant subsystem who are asked to critically review and follow the document and give advice to the authors
- This body is not yet final, suggestions for members are still welcome

Question: Analysis section in ILD

We have to cover:

Benchmark studies

We probably want to cover

Any analysis done in full simulation for ILD

IDAG recommends:

Review LOI analysis as well to make DBD self contained

Question:

For each analysis to be included in the DBD do we require a backup note?

- Was done for the LOI
- Did work quite well, but of course is additional effort.

ILD Analyses

DD/U > bb as as) messurement at 250 CoV	Hiroaki Ono	Ninnan Dantal I Injugraity	Completed undeted since LOI
BR(H->bb,cc,gg) measurement at 250 GeV		Nippon Dental University	Completed, updated since LOI
BR(H->WW*,ZZ*) measurement at 250 GeV	Hiroaki Ono	Nippon Dental University	
BR(H->gamma+gamma,gamma+Z) measurement at 250 GeV	Constantino Calancha	KEK	
Higgs BR measurements with nunuH at 1 TeV	Hiroaki Ono	Nippon Dental University	DBD Benchmark #1
riiggs BK measulements with hundirat i Tev	Constantino Calancha	KEK	
	Junping Tian	KEK	Expect major updated since LOI;
Measurement of Higgs self coupling at 500 GeV	Taikan Suehara	ICEPP, Tolkyo	To be included in DBD
	Tomohiko Tanabe	ICEPP, Tokyo	
	Hajrah Tabassam	Quaid-i-Azam University,	
Top Yukawa coupling at 500 GeV		Islamabad	
	Ryo Yonamine	Sokendai/KEK	
Top Yukawa coupling at 1 TeV	Tony Price	University of Birmingham	DBD Benchmark #3
	Ryo Yonamine	Sokendai/KEK	
WW at 1 TeV	Aura Rosca	DESY	DBD Benchmark #2
Precision measurement of Higgs couplings to gauge bosons at 500 GeV	Junping Tian	KEK	
Top pair analysis at 500 GeV	Jeremy Rouene	LAL	DBD Benchmark - ILD choice for 500 GeV
	Marcel Vos	IFIC Valencia	
Measurement of Higgs total decay width at 250 GeV	Claude Duerig	University of Bonn	
Very light gravitino with stau NLSP at 500 GeV	Ryo Katayama	The University of Tokyo	
Bilinear R-parity violation SUSY (500 GeV)	Benedikt Vormwald	DESY	
Triple gauge couplings and polarization at 500 GeV	Ivan Marchesini	DESY	Completed
Model-independent WIMP characterization (500 GeV)	Christoph Bartels	DESY	Completed
Measurement of CP Violation in the MSSM Neutraling	Mark Terwort	DESY	Completed
Mass degenerate Higgsinos in Hidden SUSY (500 GeV)	Hale Sert	DESY	
Chargino / Neutralino -> W / Z + LSP (500 GeV)	Madalina Chera	DESY	
Full Study of an MSSM scenario with rich (SPS1a'-	Mikael Berggren,	DESY	
like. but not LHC excluded) ILC phenomenoloav 25.5.2012	Stefano Caiazza. Nicola ILD Discussi		30

Question: Signatories list

Currently three options are discussed:

- 1. One common big list (a la RDR) between Accelerator and physics community applied to all volumes equally.
- 2. Different lists for TDR and DBD, but joined list for DBD (SiD, ILD, others)
- 3. Do it as in the interim report: separate lists for ILD and SiD, as an appendix to the document, double signatures are possible.

Do we have an ILD opinion for this?

Writing the DBD

Availability of material:

- Central repository at DESY
 - WEB interface available:

https://svnsrv.desy.de/baswebsvn/wsvn/General.ilddbd/trunk/ilddbd User ILDReader@desy.de, password ilddbd! Linked from the ILD Web page!

Instructions:

Please read the general instructions which are available in the repository under the "documentation" directory.

- General rules
- Citations
- Internal references.

Some Rules

DBD is written using tex and bibtex

- Common style for TDR and DBD
- Please minimise the use of special definitions and style files
- Please use pdflatex
- Please stick to the (minimal) set of rules
- Please try to use as much as possible pdf files for figures.
- For fotos please provide high resolution versions of the files

DBD repository

... and, for reference, the LOI repository is available from the same place for reference.

Summary and Conclusions

ILD is on route to deliver the DBD at the end of this year

Significant progress on many systems

- Wide ranging test beam program in collaboration with the R&D collaborations
- Significant progress in the software representation of ILD and its reconstruction
- Intense effort to understand and develop the overall ILD integration
- DBD space (150 pages) will be tight to fully acknowledge all aspect

Question:

Do we want to do a dedicated and more complete "ILD" volume based on the DBD but extended for more detail, to document more fully the ILD detector?