ILC / ILD TPC

TPC Integration

Volker Prahl

Paris, 01-02.02.2012

Overview

TPC

- Dimensions Date Jan. 2012
- Fitted into Detector
- Request for the TPC-Support
- Gap for TPC-Support
- Various designs for an TPC support
- FEA calculation
- Open mechanical questions
- Conclusion

Dimensions

The next slides shows an estimated weight calculation of the ILD TPC

Paul presented numbers for the Micro Megas on WP143								
Backframe:	938g							
Mounting Bracked:	120g							
Incl. Radiator	294g							
FEMI	170g							
Air Cooling	140g							
Total	1662 g / Module							
240 Module:	399 Kg / Endplate							
Total weight of the TPC:	1483 Kg							

Technical Data: Field cage outer vessel

Component	Outer dia. [mm]	lnner dia. [mm]	Thikness [mm]	Length [mm]	Layer	Volume [m ³] Shell [m ²]	Unit weight	
Outer vessel Core	3615	3495	60	4500	1	3.015 m³	144.72 kg Honeycomb Nomex 48kg/m³	
Outer facing Glasfiber 200g/m ² Matrix 1,3g/cm ³ 40/60	3616	(3615)	0.16 per layer	4500	2	0.0164 m ³ Shell 51.12 m ² 60% Matrix 9815 cm ³	20 kg S2-Glasmesh 195 g/m² (Silan) 12.75 kg	
Inner facing Glasfiber 200g/m ² Matrix 1,3 g/cm ³ 40/60	3495	3496	0.16 per layer	4500	2	0.0158 m ³ Shell 49.40 m ² 60 % Matrix 9486 cm ³	19.76 kg 12.33 kg	

Technical Data: Field Cage inner vessel

Component	Outer dia. [mm]	Inner dia. [mm]	Thikness [mm]	Length [mm]	Layer	Volume [m³] Shell [m²]	Unit weight	
Inner vessel Core	707	659	50	4500	1	0.241 m³	11.58 kg Honeycomb Nomex 48kg/m³	
Outer facing Glasfiber 200g/m ² Matrix 1.3g/cm ³ 40/60	708	(707)	0.16 per layer	4500	2	0.0032 m ³ Shell 9.99 m ² 60% Matrix cm ³	1.99 kg S2-Glasmesh 195 g/m² (Silan) 2.50 kg	
Inner facing Glasfiber 200g/m ² Matrix 1.3 g/cm ³ 40/60	659	(658)	0.16 per layer	4500	2	0.0030 m ³ Shell 9.30 m ² 60 % Matrix cm ³	1.86 kg 2.32 kg	

Technical Data: Field cage inner vessel

Component	Outer dia. [mm]	Inner dia. [mm]	Thikness [mm]	Length [mm]	Quatity	Volumo [m³]	e	Density Kg/m³	Unit weight
Foam ring (outer)	3615	3495	60	50	2	Corecell	1	150	7.03kg / 14,07kg
Foam ring (Inner)	708	658	50	50	2	S 800]	150	0.56kg/1.13kg
Kapton foil	3615		0.025	4500	1	1277cn	n³	1.42g/cm ³	1.8kg
Screws to fix the Endplate	! 0	uter ves	sel !		2 x 223 M8x70 1,612°			7.81kg/dm ³	0.0314kg 14,0kg
Screws to fix the Endplate	!	nner ves	sel !		2 x 54 M8x70 6,667°			3	.4kg
Inserts M8					2 x 223			7.81kg/dm³	0.0712kg 31.8kg

Technical Data: Endplate

Component	Outer dia.	Inner dia.	Material	Quantity	Weight
Endplate +Z	3616	718		1	136 kg
Endplate -Z	3616	718		1	136 kg
Module ! Raw data !				2 x 240	0.500 kg ? 240kg ?
Central Electrode Adjustment	Approval Facings: o	: Core, Hone on both sides	ycomb S Alu	1	Core: 2.6kg Facings: 3.57 kg Matrix: 5kg Epoxy 10kg
HV feed through					
! Attention !	Calculation for	fieldstrips, sł	nielding, iso	lation	100kg
Preliminary weight					925kg with Mico Megas 1483Kg

Fitted into Detector

Volker Prahl | ILD TPC | 10.10.2011 | Page 9

Fitted into Detector

The support structure has to be fulfill the following tasks

- Non-magnetic material
- Low thermal expansion coefficient
- Robust system in x,y,z,
- Short support structure (more a wish than a realistic option)
- Radiation length is only important at the end of the ECAL
- Vibration absorption in Z direction
- Accuracy 100 µm or better for Vertex, SIT, FTD !

Gap (s) for TPC-Support

View -Z Catherine Clerc

Gap (s) for TPC-Support

FACE Z-					1		
		(ables	Ecal co			
					Water Barrel		
- 23			Ecal	Ecal	Water		
Way in	Hcal	TPC	Barrel	Endcaps	Endcaps	Endcaps	Total cm ²
1	100	0	6				100
2	0	10	30	7		0	47
3	100	0					100
4	0	10	30	7	8	0	47
5	100	0					100
6	0	10	30	7	42	14	103
7	100	0					100
8	0	10	30	7	28	14	89
9	100	0					100
10	0	10	30	7	14	14	75
11	100	0					100
12	0	10	30	7	28	14	89
13	100	0					100
14	0	10	30	7		0	47
15	100	0					100
16	0	10	30	7		0	47

List of Cables, Cooling... ➤ Update available ?

Table Catherine Clerc

Various designs for an TPC support

- Post or feet ?
- Ropes or bars ?
- Hanging on the HCAL or Cryostat ?

If you collect pros and cons the "best" solution locks like

- Supported by bars
- Fixed on the Cryostat
- Min. three bars
- Made out of CF

But:

 Is the Cryostat stable enough for the requested accuracy of 100 µm?

First FEA calculation of the TPC-Supportbeam

T-beam 50x50x5 Loadset: 1000N in Z, 10000N length direction Bending: *f*= 44.2mm Can we trust this calculation? No elongation in length New FEA simulation now in progress

- ➤ HV feed through
- Central electrode design (tests for LP-TPC in progress)
- Mounting procedure of the TPC
- Mounting support for the TPC Vessel
- Fixation the TPC in Z (open issue)
- > How to mount the CF-pipe for the Vertex, SIT, FTD
- Alignment of the TPC plus attached detectors
- Design and size of the support structure (in progress)

Only some of open questions

- > Decoupling TPC from Silicon tracking?
- Dampening of vibrations understudy
- Cabling could be an issue due to Lorentz forces
- >Bar made out of CF will be build for tests soon
 - Bending and stretching tests
 - Vibration studys
 - Verifying FEA studys

Thank you !

