
1

Hit Finding with PRF
and Error Handling

in MarlinTPC

Alain Bellerive
Peter Hayman

March 26, 2012

2

Outline
• Intro: Signal Pulse

– Electronic Amplitude and time (A,t) for a pad
– Pad Response Function (PRF) to define a hit

• Background Stand Alone Code
– Brief code history
– Code structure: Improvements and limitations

• MarlinTPCP Development
– Hit Finding with PRF [now]
– Handling Error from (A,t) → (PRF,t) → (x,y,z) for a Hit to

unbiased track estimators
– Calibration PRF Module and Simulation [long term]

3

Charge dispersion

Micromegas + resistive anode

mesh

avalanche

electron

resistive foil
glue

anode pads

- A high resistivity film bonded to a readout
plane with an insulating spacer

- 2D continuous RC network defined by
material properties and geometry.

- point charge at r = 0 & t = 0 disperses with
time.

∂
∂

+
∂
∂

=
∂
∂

rrrRCt
ρρρ 11

2

2

t
RCr

e
t

RCtr 4

2

2
),(

−

=⇒ ρ

1
2

3

Q

ρ(r,t) integral
over pads

ns Amplitude = ∫ Q dt
Time = mid point (c.p.)

4

Pulse shape origin
Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)
2

exp(
2

1)(2

2

tt

ttL
σπσ

−
=

)
2

exp(
2

1)(2

2

xx

xxT
σπσ

−
=

riseT
ttR =)(

1=
0=

for riseTt <<0

for riseTt >
for 0<t

−

−=

rf t
t

t
ttA exp1exp)(for 0>t

0= for 0<t

 +−

=

th
yx

th
tyx

t 4
)(exp1),,(

222

πσ
ρ

RCh /1=

track

mesh

pads

T(x)

x

Transverse diffusion

Longitudinal diffusion

Induction gap

Electronic Response

Resistive foil + glue

5

Pulse shape origin
Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)
2

exp(
2

1)(2

2

tt

ttL
σπσ

−
=

)
2

exp(
2

1)(2

2

xx

xxT
σπσ

−
=

riseT
ttR =)(

1=
0=

for riseTt <<0

for riseTt >
for 0<t

−

−=

rf t
t

t
ttA exp1exp)(for 0>t

0= for 0<t

 +−

=

th
yx

th
tyx

t 4
)(exp1),,(

222

πσ
ρ

RCh /1=

track

mesh

pads

L(t)

t

Transverse diffusion

Longitudinal diffusion

Induction gap

Electronic Response

Resistive foil + glue

6

Pulse shape origin
Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)
2

exp(
2

1)(2

2

tt

ttL
σπσ

−
=

)
2

exp(
2

1)(2

2

xx

xxT
σπσ

−
=

riseT
ttR =)(

1=
0=

for riseTt <<0

for riseTt >
for 0<t

−

−=

rf t
t

t
ttA exp1exp)(for 0>t

0= for 0<t

 +−

=

th
yx

th
tyx

t 4
)(exp1),,(

222

πσ
ρ

RCh /1=

track

mesh

pads

L(t)

t Trise

1

0

Transverse diffusion

Longitudinal diffusion

Induction gap

Electronic Response

Resistive foil + glue

7

Pulse shape origin
Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)
2

exp(
2

1)(2

2

tt

ttL
σπσ

−
=

)
2

exp(
2

1)(2

2

xx

xxT
σπσ

−
=

riseT
ttR =)(

1=
0=

for riseTt <<0

for riseTt >
for 0<t

for 0>t

0= for 0<t

 +−

=

th
yx

th
tyx

t 4
)(exp1),,(

222

πσ
ρ

RCh /1=

L(t)

t Trise

1

0

Transverse diffusion

Longitudinal diffusion

Induction gap

−

−=

rf t
t

t
ttA exp1exp)(Electronic Response

Resistive foil + glue

8

M.S. Dixit & A. Rankin, NIM A566, 281 (2006)

C++ code developed during summer 2010

Pulse shape origin
Transverse diffusion

Longitudinal diffusion

Intrinsic rise time

Preamplifier effect

Resistive foil + glue

)
2

exp(
2

1)(2

2

tt

ttL
σπσ

−
=

)
2

exp(
2

1)(2

2

xx

xxT
σπσ

−
=

riseT
ttR =)(

1=
0=

for riseTt <<0

for riseTt >
for 0<t

−

−=

rf t
t

t
ttA exp1exp)(for 0>t

0= for 0<t

 +−

=

th
yx

th
tyx

t 4
)(exp1),,(

222

πσ
ρ

RCh /1=

Q

ρ(r,t) integral
over pads

Transverse diffusion

Longitudinal diffusion

Induction gap

Qi = ∫ ρi(r) dr

Ai = Amplitude = ∫ Qi(t) dt
Time = mid point (c.p.)

Electronic Response

9

(mm) Xtrack

PRF

Pad Response Function (PRF)

Ai

For a given Xtrack (known position) the PRF is
determined for each row

1.0

• Only two parameters (simpler model)
• Easier to work with
• Better fits to data
• Error on Ai or P(xi) [understood to
first order... But important for optimal
spatial resolution and minimum bias]

(mm)

Pad Response Function

MPGD CERN Sept 10-11,
2007

Alain Bellerive
11

PRF versus Z

anode
pads

mesh

Direct signal

avalanche

electron

Micromegas

z / cm

σ x
 /

m
m

w/121/2 = 664 µm

pad-pitch
dominant

diffusion
dominant

x

Ar/iC4H10 95/5

noise

re
la

tiv
e

am
pl

itu
de

15.7 cm

6 < z < 7cm
8 < z < 9cm

10< z < 11cm
12 < z < 13cm
14 < z < 15cm

4 < z < 5cm
2 < z < 3cm
0 < z < 1cm

xpad-xtrack / mm

TPC PRF

Amplitude Errors

σAi
=

Many source of errors on the
amplitude: pure statistical,
diffusion, noise, track-angle,
etc…[under study]

13

Background - Stand Alone Code

•Our analysis code was developed (mostly)
independently at Carleton
•It began life as a FORTRAN95 program, but was
eventually machine-code translated into C++
•This code was modified many times over the
years, and was used to develop the analysis
process from testbeam data (KEK, DESY and LP)
•It was successful for its purpose
•At the beginning of the summer 2010, the code
consisted of several unique programs...

14

Background – Stan Alone Code
– NativeToLCIO

• Converts data from the native file format of the detector
hardware to the LCIO standard

– Main Code
• DD: creates dense data files from LCIO
• PRF: determines track fits based on pad response

function (prf) supplied by user
• BIAS: calculates and saves values used for bias and

reso ROOT scripts

– ROOT Scripts:
• PRF: used to determine goodness of fit of the prf with

chosen parameters
• BIAS: calculates and corrects for signal bias inherent to

the detector
• RESO: calculates the resolution

15

Improvements – Structure
•The structure of the operation of the code is
mostly unchanged, with only small modifications
to improve ease-of-use (ex. command-line
arguments)
•Underlying source code was vastly changed –
specifically the main code.
•Proper programming practice was
implemented in 2011 (so it can now really be
called C++)
•Biggest memory leaks have been plugged
•The new code do not affect the physics results

25/03/2012 16

Improvements – Structure
Globals:

17

Improvements – Structure

Classes:

18

Improvements – Limitations
•The new code was much more readable and
far simpler to actually develop. However,

– It is still fairly slow
– The ROOT scripts are virtually untouched and

still very detached from the main code (which,
while undesirable for a unified analysis code
package, is potentially useful later on)

– Lack of communication between the scripts
and the code prevents implementation of some
potentially very useful improvements (e.g.,
reducing overflow rejections)

– Still completely detached from the
international effort

19

MarlinTPC

•What was the next step for January 2012?
– Could continue structural improvements and

unification of different processes into one large
analysis package, but...

– Could also kill several small flying creatures with
one stone and integrate our code with MarlinTPC.

– A global analysis software needed for the 7-module
runs coupled with global track fitting algorithm

20

MarlinTPC
•MarlinTPC is the global effort to develop a
single analysis code package for all the different
prototype TPCs being developed.
•It is far from complete, but it has a solid
foundation, and the MPGD TPC is the last
prototype that is unrepresented
•Furthermore, now seems to be the optimal time
to integrate our code, as demonstrated by the
number of small flying animals this one stone
will hit...

21

MarlinTPC
•Small Flying Animal #1:

– Modularity of ROOT scripts and code processes is
ideally suited to the Marlin design, while Marlin
contributes a unified analysis package

•Small Flying Animal #2:
– Many basic elements of the procedure are already

implemented in Marlin, such as detector layout (GEAR),
constants (LCCD), and global containers (LCIO)

•Small Flying Animal #3:
– The similar pad-based detectors already implemented

in Marlin seem to be at about the same stage we are
with respect to track fitting, but are lacking bias and
residuals checks

22

MarlinTPC
•The consequences of each of these points, are as
follows:

– Our pre-existing modularity means that the most
difficulty and effort in integration will be due to
learning the Marlin environment

– The pre-existing Marlin tools means that improved
overflow checks should be trivial to implement, and
having access to a polar coordinate system means
accurate representation of the detector, and an
easier extension to curved tracks

– The current stage of development on all sides means
that our involvement will allow us to pool our
resources and develop a strong trackfitting algorithm

23

Immediate Plans
• Implement the PRF in Hit finding

– First goal is to use PRF parameters determined with
stand alone code (FTPC) to find hits with Marlin

– Hits will be found by fitting the PRF to associated
groups of pulses (i.e., pulse from the main pad, and
the first, and second neighbors)

– Hits will then be used in the Kalman Filter to find
tracks

• Current Progress
– A rough draft of the PRFBasedHitFinderProcessor

has been written, and is debugging is underway
– The PRF needs to be provided

Row Hit Position Finding
• Fit: Row contributions using with PRF P(xi)
 for z=constant (known):

PRF parameterization needs to be known [critical]
•Marlin public Minuit to minimizes the χ2 by
adjusting parameters x of the PRF.
• Need to know error associated with Ai or P(xi)!!!
 Default is σAi=constant or √A (under study).
 Fit Result:
 transverse position of the hit in row

eff

d

N
zC ⋅

+=
2

2
0σσ

B=1 T Cd = 94.2 µm/√cm (

Hit Resolution for Track Fitting

Definitions (recall):

- residual: xrow - xtrack

- resolution: standard

deviation of residuals
- we need PRF to find track,

but we need track position

to determine the PRF

Resolution =

Tranverse Plane (x-y)

26

Example: Two-track finding per row

27

Future Plans
• Implement PRF Parameterization with Errors

– Reconstruction in 3D (x,y,z) and properly account for
errors when calibrating the PRF, such that the PRF
can be used to find 3D hits and their errors in Marlin

• Implement PRF Calibration in Marlin
– Eventually, the calibration process that is being done

in the FTPC code will be ported to Marlin. This will
allow direct calibration with the 7-module prototype,
which could potentially return significantly different
parameterizations from previous prototypes

• Simulation Signals: Nelectron/ion (A,t) PRF
– Full understanding of ionization, transport, geometry,

and electronics response for 3D tracks

28

Future – Simulation
•Concurrently developing simulation of
Micromegas detector

•The procedure for the analysis is, basically,

29

Simulation
The simulation will perform the following
calculations,

And this will fit in with the analysis work, by simply
replacing the detector data with the simulated data
in the analysis procedure.

30

Simulation

31

Conclusion
• Progress toward PRFBasedHitFinderProcessor

– First C++ implementation in MarlinTPC done
– Investigation of error on amplitude and time (A,t)
– Pad Response Function (PRF) to define a hit in 3D
– Up to now Z=constant (known)
– Transverse resolution versus Z (σ0 and Neff) of a hit as

well as longitudinal resolution (time resolution) to be
used for later "track fitting" (PRF-track is chicken-egg)

• Long Term:
– PRF determination in MarlinTPC (calibration)
– Handling Error from (A,t) → (PRF,t) → (x,y,z) for a Hit to

find unbiased track estimators and their uncertainties
– Simulation of amplitude and time (A,t) to close the loop

	Hit Finding with PRF�and Error Handling�in MarlinTPC
	Outline
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Background - Stand Alone Code
	Background – Stan Alone Code
	Improvements – Structure
	Improvements – Structure
	Improvements – Structure
	Improvements – Limitations
	MarlinTPC
	MarlinTPC
	MarlinTPC
	MarlinTPC
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Future – Simulation
	Simulation
	Simulation
	Conclusion

