Super-ALTRO Demonstrator Test Results

Introduction

First test results already presented in October 2011, see:

<u>http://ilcagenda.linearcollider.org/materialDisplay.py?contribId=3&materialId=slides&confId=5365</u> Or see:

http://indico.cern.ch/conferenceDisplay.py?confId=155595

New test conditions:

 Sampling clock frequency increased to 40MHz (design target), readout clock 40MHz.

Chip PGA3: the inputs of the PASA are not bonded. This avoids noise injection from the ground plane of the test board.

Chip PGA4: all inputs bonded.

Measurements presented today:

- Analog noise
- Digital power consumption
- Chip power consumption and power pulsing measurements

Acquired pulses

Examples of acquisitions at 30ns and 120ns shaping time. Sampling frequency 40MHz. Signal scan with a granularity of 5ns.

M. De Gaspari

Gain measurement

Measured gain 10.6mV/fC±1.9%

M. De Gaspari

Baseline noise: PGA3

PGA3: inputs not bonded

Noise constant across channels

M. De Gaspari

Noise summary

	Config	120ns L 12	120ns L 27	30ns L 12	30ns L 27	120ns H 12	30ns H 12
PGA3	Noise LSB	0.480	0.655	0.526	0.683	0.498	0.504
	Noise fC	0.088	0.051	0.103	0.059	0.092	0.100
	Noise e-	547	316) 641 (370) 574	625
PGA4	Noise LSB	0.709	1.346	1.475	3.263	0.668	1.279
	Noise fC	0.129	0.104	0.287	0.283	0.123	0.254
	Noise e-	809	649	1796	1768	770	1587

Measured baseline noise averaged over 16 channels. Shaping 30-120ns, Gain 12-27mV/fC, signal polarity H/L.

(H = negative input charge => MPGD, L = positive input charge => wire chamber)

M. De Gaspari

Baseline noise: PGA4

Measured baseline noise for different input capacitances.

PGA4, Channel 0, 120ns, 12mV/fC

Baseline noise: DSP influence

Negligible influence of the amount of switching logic on the noise: basic data acquisition and data acquisition with BC1 memory (Look-Up Table) switching.

DSP tests 1

Known pattern written in the Pedestal Memory (Baseline Correction 1) and used as test input

Undershoots Emulates the pattern produced by a real detector

M. De Gaspari

The DSP removes offsets, undershoots, baseline drifts

Power consumption: DSP

Power consumption of the DSP when acquiring at 40MHz sampling frequency. Different DSP functionalities included.

Power consumption: DSP

Power consumption of the DSP for different sampling clock frequencies. DSP configuration: (Data In) – (Look-Up Table).

M. De Gaspari

Power consumption: DSP

Power consumption of the DSP at different supply voltages. Efficient operation down to 1V supply.

M. De Gaspari

Power consumption

Each block can be switched off independently, and without removing the supply voltage (smart shutdown). PASA and ADC: remove the bias voltages DSP: remove the sampling/readout clock

	40MHz operation	Smart shutdown
PASA	10.26mW/ch	132uW/ch
ADC analog	31.28mW/ch	430uW/ch
ADC digital	1.71mW/ch	≈0
DSP	4.04mW/ch	10uW/ch

Power consumption: 47.3mW/ch, 757mW total @40MHz.

M. De Gaspari

Power pulsing cycle

Power consumption of the DSP during a power pulsing cycle.

Minimum delay between power up and L1 trigger has to be measured. Readout time is determined by the test setup (RCU) \rightarrow minimum PP cycle \approx 1ms.

Power pulsing cycle

A test pulse is injected after power up; the amplitude of the pulse is monitored with different delays between power up and L1. 100usec delay gives good results: difference with continuous mode <1LSB

Power pulsing: results

	Shutdown (mW)	Power pulsing cycle (uJ)
PASA	2.12	145.2
ADC analog	6.88	421.1
ADC digital	0.01	22.9
DSP	0.16	58.3
Pads	≈0	6.9
Total	9.2	654.3

Power pulsing cycles are repeated at a frequency of 50Hz (Duty≈1/20). Chip total power=9.2mW+50Hz*654.3uJ=41.9mW Power reduction by a factor 18.1! (continuous mode: 757mW)

• The 16 channel Super-ALTRO Demonstrator has been designed, prototyped and tested successfully!!

• The chip is already usable for the Linear Collider TPC prototype. The area is 3.07mm²/channel (LCTCP requirement: <4mm²)

• Using appropriate design techniques, integration of low-noise analog components and digital functions is possible with little effect on noise performance.

• Power pulsing approach has been demonstrated effective in reducing the power consumption, while preserving the performance.

