Update on ion back drift studies with $$\rm GARFIELD{++}$$

Klaus Zenker

26.03.2012

GEM ILD TPC

GEM geometry

CERN GEM:

double conical holes

Fig.: GEM [http://gdd.web.cern.ch/GDD/]

- kapton (50 µm) enclosed by copper surface (5 µm)
- $r = 25 \,\mu m, R = 35 \,\mu m$
- \triangleright pitch $p = 140 \,\mu m$
- optical transparency $\tau_{\text{opt.}} = \frac{A_{\text{hex.}}}{A_{\text{circ.}}} = \frac{2\pi R^2}{\sqrt{3}p^2} = 23\%$

Particle drift in the TPC

- ILD TPC: magnetic field lines are parallel to the electric field lines
- Due to different masses:
 - electrons follow electric field lines
 - ions follow magnetic field lines

Typical values for the drift velocity and the mobility:

$$(|\vec{E}| = 250 \text{ V/cm}, |\vec{B}| = 3.5 \text{ T}, 95 \% \text{ Ar} - 5 \% \text{ CO}_2)$$

	ion	electron
$\stackrel{\mu}{\overrightarrow{v_{\mathrm{D}}}}$	$\begin{array}{l} \approx 2{\rm cm}^2/{\rm Vs} \\ \approx 5\times 10^{-4}{\rm cm}/\mu{\rm s} \end{array}$	$\begin{array}{l} \approx 1.5 \times 10^4 {\rm cm}^2 / {\rm Vs} \\ \approx 3.5 {\rm cm} / \mu {\rm s} \end{array}$

3

Challenges of the ILD TPC

- ions are produced in the amplification stage
 - $\rightarrow\,$ there are three ion discs in the TPC simultaneously (due to the ILC bunch structure)
- ion density is higher for smaller radii of the TPC
 - \rightarrow field distortions are arising $\overrightarrow{E} \times \overrightarrow{B}$ effects are resulting

Fig.: ILC Bunch structure [DESY-THESIS-2008-036]

4

Optimization of the amplification stage

- cathode
- ionizing particle
- GEM tuned for ion reduction
- ► amplifying GEMs
- anode

GEM parameters:

- GEM voltage
- ▶ GEM geometry (influence on \(\tau_{opt.}\) and \(\tau_{e^-}\))

set up parameters:

- transfer fields
- induction fields

Aim of this study

 Optimization of the TPC amplification stage with regard to a minimal number of ions drifting back into the sensitive volume.

Analysis overview

Introduction

GEM ILD TPC

Simulation of the GEM amplification

Parameters

1. Simulation of the electric fields

2. Simulation of the particle drift

Summary and outlook

6

1. Simulation of the electric fields:

- $1.1\,$ 3D model of the GEM
- 1.2 FEM calculations of the potentials
- 1.3 export of the potentials, node positions and material properties
 - ► CST Studio Suite™
 - cubic elements with 8 nodes

► ANSYS[®]

 tetrahedral elements with 10 nodes and curved edges

Ð

Klaus Zenker

Analysis overview

Introduction

GEM ILD TPC

Simulation of the GEM amplification

Parameters

- 1. Simulation of the electric fields
- 2. Simulation of the particle drift

Summary and outlook

- 2. electron/ion drift in gases:
 - ► GARFIELD++
 - treats all ionisation processes in gases
 - can be used to calculate electron transparency, gain, ion back drift ...

Setup of the simulation

amplification with a single GEM

- $E_{\rm drift} = 250 \, {\rm V/cm}$
- $E_{\text{induction}} = 1000 \, \text{V/cm}$
- $U_{\rm GEM} = 350 \, {\rm V}$
- gas: 95% Ar, 5% CO₂
- Simulated event ≡ one electron is freed in the drift volume
- ► event definition in the analysis = aggregation of 5 simulated events

GARFIELD++ Result: effective gain

GARFIELD++ Result: ion back drift

GARFIELD++ Result: effective gain for a double GEM setup with CST^M

GARFIELD++ Result: ion back drift for a double GEM setup with CST^M

Summary:

- ► CST[™] Interface for GARFIELD++ was written
- successful simulation of a single and double GEM setup
- comparison with reference software ANSYS[®]

Outlook:

- experimental measurement of a double GEM setup with different GEM geometries
- simulation of these setups
- comparison of experimental results with the simulation
- optimisation of the setup with regard to a minimal ion back drift and a maximal electron transparency with GARFIELD++

Backup

GARFIELD++ result: gain

GARFIELD++ result: ion back drift

GARFIELD++ result: extraction efficiency

GARFIELD++ result: extraction efficiency of a double GEM stack (CST[™])

GARFIELD++ result: ion back drift of a double GEM stack (CST^M, Def. as given by Killenberg et. al.)

 χ^2 / ndf = 18.6 / 16

Experiment

Figure: Small TPC [DESY-THESIS-10-015]

cathode

The DESY Small Prototype is being used.

- diameter of 25 cm
 ⁵⁵Fe source on top of the
- drift length of 20 mm

Two type of GEMs will be considered in the beginning:

- standard CERN GEMs ($R = 35 \,\mu \mathrm{m}$, $\tau_{\mathrm{opt.}} = 0.23$)
- modified CERN GEMs ($R = 50 \,\mu \mathrm{m}$, $\tau_{\mathrm{opt.}} = 0.46$)

After commissioning stacks of two same type GEMs, a stack of three GEMs will be used.

In addition, we contemplate to measure the currents in the system to prove the ion suppression.

Experimental setup

voltage divider

as power source

Experimental setup

Experimental setup

Klaus Zenker Update on ion back drift studies with GARFIELD++

Comparison of the effective double GEM gain

