ILC / ILD TPC

status of the support mechanics

Volker Prahl

Hamburg 26.03.2012

- Fixing points of the TPC support structure
- Pros and cons of various fixing points
- Requirements of the TPC support structure
- Estimated acceleration and forces
- Dimensions of the support structure
- FEA analysis and calculation
- Possible design of the support structure
- Conclusion and outlook

Fixing points of the TPC support structure

Only the cryostat is foreseen to support the TPC

Main dimensions of the TPC (outside) \emptyset Od = 3616, r=1808 \emptyset Id = 658, r=329 Length = 4700 incl. endplate and cabling

	HCAL	Cryostat
3x120°	 Accuracy Shorter support structure HCAL deformation Seismic stability 	 + Accuracy - Longer support structure + Cryostat deformation - Seismic stability
4x90°	See above + Seismic stability - More space required	See above + Seismic stability - More space required

The support structure has to be fulfill the following tasks

- Non-magnetic material
- Low thermal expansion coefficient
- >Robust system in x,y,z,

- Carbon fiber structure preferred

- Accuracy and stability has to be constant over the lifetime
- Earthquake-safe system
- Short support structure (more a wish than a realistic option)
- Vibration absorption in Z direction
- Required accuracy 100 µm or better for Vertex, SIT, FTD !
- Min free space of 10 mm in all directions ! Gaps ! Volker Prahl | ILD TPC | 26.03.2012 | Page 5

Values of basic peak acceleration a₀ [m/s²]

North siteSouth siteFor the proposed Japanese sides $A_0 < 1.5 \text{ m/s}^2$ $A_0 < 1.0 \text{ m/s}^2$

Please have a look at the talk from **O. Ferreira, LLR Ecole Polytechnique** http://ilcagenda.linearcollider.org/conferenceDisplay.py?confid=5524.

TPC weight for calculation: 2000 kg >20000 N Incl. FTD, SIT, Vertex Seismic load force: 3000 N in x,y,z

The additional force load in longitudinal direction of the cantilever support should not be an issue.

Question: Is a maximal amplitude of +/-10 mm acceptable? Impact of this maximum amplitude on the remaining support structure

Dimensions of support structure

Gap size: in Z direction = 55mm, circular = 200 The 30mm " no go zone" will be used only in a worst case

Should the support structure be as small as possible or as big as possible (with space inside used for cables, cooling etc.) Necessary gap for adjustment and

Endcap

An cantilever design is only possible if minimum of 4 gaps can be used

FEA analyses and calculation

T-beam may have a buckling problem, the current model only provides basic properties. The next calculation will be done with an rectangluar or squared hole profile. Possible profiles will be selected with a max. deflection of f=10mm.

A profile with dimensions 60x60 fulfill the requirements

Possible design of the support structure

Endview of the support structure

Conclusion

- Support system with min. 4 bars necessary
- Required space is an issue with the infrastructure and gaps between and in the middle of the HCAL octagons
- Alternative approaches have to be considered
- Various cross sections of the cantilever will be calculated
- Alternative system design maybe required

Outlook

- Availability of space in the gaps has to be evaluated
- More FEA studies in progress
- Minimize the cross section of the cantilevers
 - Depends on the requirements
- Placeholder has to be defined before the next Integration meeting Paris

