Status of the DESY GEM Module

Felix Müller LCTPC collaboration meeting 26.03.2012

Overview

- Current DESY GEM module
 - Setup of the module
 - Performance of the module
 - Observed effects
- New module
 - Improvements
 - Status
- Conclusion

Current Module

- Triple GEM stack and optional forth gating GEM
- Segmentation of GEM
 - Reduce energy stored in one sector

Current Module

- Ceramic mounting structure
 - Mechanical support
 - Improve GEM flatness
 - Minimal dead space
- Small pads only at the center (1.26x5.85 mm²)
- Larger pads connected to ground

Alignment pins

Felix Müller

LCTPC 26.03.2012

HV connection

Performance of the current Module

Performance of the current Module

Problems observed

- High voltage
 - Insulation between HV and the pads
 - Gluing of the ceramics onto the board
 - Trips destroyed GEM sectors
 - Protective resistors too far from the GEMS
 - Additional energy stored in the cable

Problems Observed

- Reduced efficiency on the pads at the edge of the board
- Field distortions due to the gap between two modules

Number of reconstructed pulses

Improvements for the new Module

- Full sensitivity
- High voltage distribution
- Reduction of field distortions
- More defined production process
- Enhancement of the GEM flatness?

Full Sensitivity

- 1000 readout channels
- Central tracks at full resolution

- 5000 readout channels
- Complete coverage of small pads

Designed by Jochen Kaminski at Bonn for Terascale Alliance

High Voltage distribution

- Two 4-pin high voltage connectors
- SMD protective resistors on the board
 - Reduce energy released during discharges

Source: Fischer Connectors

Simulation of Field Distortions

- Performed by Klaus Zenker
- Field distortions at the gap between two modules
- Electrostatic simulation with CST
- Garfield++ simulation of the electron drift

Field Distortions

- Horizontal E-field at the gap between dummy module and DESY module
- Large fluctuations causes electrons to drift towards the gap

Simulation and Measurement

- Electron position above the top GEM
- Count number of electrons at the pad positions
- Underflow represents electrons which missed the board
- Overflow are all electrons at higher row numbers

Field Shaping

- Additional strip on the ceramic frame
 - Same potential as top GEM

Felix Müller

Field Shaping

• Additional two strips on the ceramic frame

Felix Müller

Results of the Simulation

Number Electrons per pad normalised to pad 3

• Further analysis with two real modules

One strip

Number Electrons per pad normalised to pad_3

Number Electrons per pad normalised to pad_3

Two strips

Felix Müller

Status of the new Module

- Nearly everything is ordered
 - HV cable, pad board, back frame, ceramics
- Or arrived
 - GEMs, HV connectors
- Todo: testing the single components
- Todo: testing assembled module
 - GEM flatness
 - Gain uniformity
- Go to the test beam at the end of summer with three modules

Conclusion and Outlook

- First iteration of a triple GEM module with pad readout was tested successfully
- Problems of the design were identified
 - Design changes for a new module were developed
- Ongoing analysis shows reasonable results

Outlook

- A new module is in production
- Late summer test beam with three modules