Study on Angle Pad Effect

Status report

Ryo Yonamine

LC TPC collaboration meeting 27th Mar. 2012

Analytic Expression of the Spatial Resolution

Helpful to understand how the point resolution is determined.

This work is based on the past work, in which only a perpendicular track to pad-rows was discussed. (Nucl.Instrum.Meth.A641:37-47,2011)

New points :

- de-clustering effect · · · diffusion and pad response function in a direction of pad-rows act on Neff
- angular pad effect $\cdot \cdot \cdot$ track angle is a factor affecting the spatial resolution

We will also check the validity of approximation used in our calculation by a Monte-Carlo simulation.

Resolution

definition:

$$\langle (\boldsymbol{x} - \tilde{\boldsymbol{x}})(\boldsymbol{x} - \tilde{\boldsymbol{x}})^T \rangle = \int_v \frac{d\tilde{\boldsymbol{x}}}{v} \int d\boldsymbol{x} \ P(\boldsymbol{x}; \tilde{\boldsymbol{x}})(\boldsymbol{x} - \tilde{\boldsymbol{x}})(\boldsymbol{x} - \tilde{\boldsymbol{x}})^T$$

 $oldsymbol{x}$: measured values

 $ilde{oldsymbol{x}}$: true values to be measured

 $P(oldsymbol{x}; ilde{oldsymbol{x}})$: probability to be measured $oldsymbol{x}$

 ${\mathcal U}$: readout unit (pad , pixel , voxel , ...)

Application to TPC case

TPC:

Two dimensional readout

x coordinate is determined by a charge centroid method. y coordinate is determined by pad-row numbers.

(In the case of standard readout pad)

measured values:

$$\boldsymbol{x} = \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \vdots \\ \bar{x}_n \end{pmatrix}$$
 (subscript gives pad-row number)

Strategy:

Concentrate on one pad-row and discuss x resolution in the pad-row.

We would also like to consider correlations between pad-rows due to de-clustering effect.

If there is correlations between pad-rows,

 $\langle (\boldsymbol{x} - \tilde{\boldsymbol{x}})(\boldsymbol{x} - \tilde{\boldsymbol{x}})^T \rangle$ has off-diagonal elements.

In that case, σ_x^2 is not enough to discuss spatial resolution.

Spatial Resolution (Standard readout pad case):

 $P(oldsymbol{x}; ilde{oldsymbol{x}})$ Components

		3.7	
 Primary ionization 	$D (M, \dots, \Lambda V)$	N	: # of primary electrons
<u>I IIIIai y IoIIIZacioii</u>	$P_{PI}(N; n\Delta Y)$	n	: gas density
• <u>y position of i-th primary</u>	$\mathbf{D}(\mathbf{x}) = 1$	ΔY	: projected track length to y axis, to be considered In general $\Delta Y ightarrow \infty$
ionization along a track	$P(y_i) = \frac{1}{\Delta Y}$	y_i	: projected position to y of i-th cluster
 <u>Secondary ionization</u> 	$P_{SI}(M_i)$	M_i	: # of secondary electrons from i-th primary electron
• <u>Diffusion</u>	$P_D(\Delta x_{ij}), P_D(\Delta y_{ij})$	Δx_{ij}	: displacement of the j-th electron in i-th cluster,
		Δy_{ij}	by the diffusion in drift region
 Gas amplification 	$P_G(G_{ij})$	G_{ij}	: gain of the j-th electron in i-th cluster
• <u>Electric noise</u>	$P_E(\Delta Q_a; \sigma_E)$	ΔQ_a	: noise charge
		a	: pad number
 Pad response function 			
x direction :	$F_a(x_{ij})$	x_{ii}	• position where i-th electron in i-th cluster arrives at
		່ງ	$x_{ii} = \tilde{x} + y_i \tan \phi + \Delta x_{ii}$
			ϕ : track angle
			φ : projected position to v of i-th cluster
v direction :	$R_{\perp}(u;\cdot)$		
,	r(gij)	r	: row ID (omit if not necessary)
		y_{ij}	: position where j-th electron in i-th cluster arrives at
	_		

In this report, I would like to skip the details of calculation. (Instead I give some notes in the backup slides.)

Following is a expression after some calculation.

$$\begin{split} \sigma_{\bar{x}} &= \frac{\sigma_E^2 \sum_a (aw)^2}{\sum_a Q_a} \\ &+ \sum_{N=1}^{\infty} P_{PI}(N; n\Delta Y) \prod_{i=1}^N \left[\int_{-\Delta Y/2}^{\Delta Y/2} \frac{dy_i}{\Delta Y} \sum_{k_i=0}^{M_i} \bar{P}_{SI}(k_i, y_i) \right] \times \\ &\left[\left(\sum_a \sum_b (abw^2) \sum_{i=1}^N k_i \left(< F_a(x_{ij}) F_b(x_{ij}) >_{\Delta x} \left\langle \frac{G_{ij}^2}{(\sum_{i=1}^N \sum_{j=1}^{k_i} G_{ij})^2} \right\rangle_{G_{ij}} \right. \\ &- \left. < F_a(x_{ij}) >_{\Delta x} < F_b(x_{ij}) >_{\Delta x} \left\langle \frac{G_{ij}}{\sum_{i=1}^N \sum_{j=1}^{k_i} G_{ij}} \right\rangle_{G_{ij}}^2 \right) \\ &+ \left(\sum_a (aw) \sum_{i=1}^N k_i < F_a(x_{ij}) >_{\Delta x} \left\langle \frac{G_{ij}}{\sum_{i=1}^N \sum_{j=1}^{k_i} G_{ij}} \right\rangle_{G_{ij}} - \tilde{x} \right)^2 \right] \end{split}$$

Summary and Plans

My understanding at this moment

- To obtain more detailed relation, we need further calculation.
 --> Need to continue this work.
- Approximations used in the calculation should be validated by a Monte-Carlo simulation.

- Try to find the possibility to calculate resolution in the case of arbitrary angle of a track faster than a Monte-Carlo simulation.

- We would also like to study on the correlation effect between pad-rows.

Backup

 ΔQ_a Integration

$$P(\bar{x};\tilde{x}) = \sum_{N=1}^{\infty} P_{PI}(N;n\Delta Y) \sum_{M_1,M_2,\cdots,M_N} \prod_{i=1}^{N} \left[P_{SI}(M_i) \int_{-\Delta Y/2}^{\Delta Y/2} \frac{dy_i}{\Delta Y} \prod_{j=1}^{M_i} \left[\int_{-\infty}^{\infty} d\Delta x_{ij} P_D(\Delta x_{ij};\sigma_d) \int_{-\infty}^{\infty} d\Delta y_{ij} P_D(\Delta y_{ij};\sigma_d) \int_{0}^{\infty} dG_{ij} P_G(G_{ij}) \right] \prod_{a} \left[\int d\Delta Q_a P_E(\Delta Q_a;\sigma_E) \right] \left[\left(\frac{\sum_a (Q_a + \Delta Q_a)(aw)}{\sum_a (Q_a + \Delta Q_a)} - \tilde{x} \right)^2 \right]$$

$$\approx \qquad \frac{\sigma_E^2 \sum_a (aw)^2}{\sum_a Q_a} \\ + \qquad \sum_{N=1}^{\infty} P_{PI}(N; n\Delta Y) \sum_{M_1, M_2, \cdots, M_N} \prod_{i=1}^N \left[P_{SI}(M_i) \int_{-\Delta Y/2}^{\Delta Y/2} \frac{dy_i}{\Delta Y} \right] \\ \prod_{j=1}^{M_i} \left[\int_{-\infty}^{\infty} d\Delta x_{ij} P_D(\Delta x_{ij}; \sigma_d) \int_{-\infty}^{\infty} d\Delta y_{ij} P_D(\Delta y_{ij}; \sigma_d) \int_{0}^{\infty} dG_{ij} P_G(G_{ij}) \right] \left(\frac{\sum_a Q_a(aw)}{\sum_a Q_a} - \tilde{x} \right)^2$$

The first-order term of ΔQ_a vanishes after integration.

 $\sum_{a} \Delta Q_a \approx 0 \text{ have been used.}$

 $Q_a = \sum_{i=1}^{N} \sum_{j=1}^{M_i} G_{ij} F_a(x_{ij}) R(y_{ij}) \quad \text{which corresponds to the charges arriving at a-th pad.}$

$$\sum_{a} Q_{a} = \sum_{i=1}^{N} \sum_{j=1}^{M_{i}} G_{ij} R(y_{ij}) \text{ because } \sum_{a} F_{a}(x_{ij}) = 1$$

Δx_{ij} Integration

$$\begin{split} &= \frac{\sigma_{E}^{2} \sum_{a} (aw)^{2}}{\sum_{a} Q_{a}} \\ &+ \sum_{N=1}^{\infty} P_{PI}(N; n\Delta Y) \sum_{M_{1}, M_{2}, \cdots, M_{N}} \prod_{i=1}^{N} \left[P_{SI}(M_{i}) \int_{-\Delta Y/2}^{\Delta Y/2} \frac{dy_{i}}{\Delta Y} \right] \\ &\prod_{j=1}^{M_{i}} \left[\int_{-\infty}^{\infty} d\Delta y_{ij} P_{D}(\Delta y_{ij}; \sigma_{d}) \int_{0}^{\infty} dG_{ij} P_{G}(G_{ij}) \right] \left[\left\langle \left(\frac{\sum_{a} (aw) \sum_{i=1}^{N} \sum_{j=1}^{M_{i}} G_{ij} F_{a}(x_{ij}) R(y_{ij})}{\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} G_{ij} R(y_{ij})} - \tilde{x} \right)^{2} \right\rangle \\ &= \frac{\sigma_{E}^{2} \sum_{a} (aw)^{2}}{\sum_{a} Q_{a}} \\ &+ \sum_{N=1}^{\infty} P_{PI}(N; n\Delta Y) \sum_{M_{1}, M_{2}, \cdots, M_{N}} \prod_{i=1}^{N} \left[P_{SI}(M_{i}) \int_{-\Delta Y/2}^{\Delta Y/2} \frac{dy_{i}}{\Delta Y} \\ &\prod_{j=1}^{M_{i}} \left[\int_{-\infty}^{\infty} d\Delta y_{ij} P_{D}(\Delta y_{ij}; \sigma_{d}) \int_{0}^{\infty} dG_{ij} P_{G}(G_{ij}) \right] \right] \times \\ &\left[\left(\frac{\sum_{a} \sum_{b} (abw^{2}) \sum_{i=1}^{N} \sum_{j=1}^{M_{i}} G_{ij}^{2} R(y_{ij})^{2} (< F_{a}(x_{ij}) F_{b}(x_{ij}) > \Delta x - < F_{a}(x_{ij}) > \Delta x < F_{b}(x_{ij}) > \Delta x} \right] \\ &+ \left(\frac{\sum_{a} (aw) \sum_{i=1}^{N} \sum_{j=1}^{M_{i}} G_{ij} R(y_{ij})}{\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} G_{ij} R(y_{ij})} - \tilde{x} \right)^{2} \right] \end{split}$$

The difficulty to go further is that denominator includes the integration variables. --> Need approximations or variable transformation

There is still room for improvement the following formulation.

In this report, I would like to show a formulation that is easy to understand the meaning but is not always demand mathematical strictness.

 y_{ij} is more convenient as a integration variable than Δy_{ij} due to the de-clustering effect because the charges arriving at the pad-row depend on only y_{ij}

$$y_{ij} = y_i + \Delta y_{ij}$$

$$dy_i d\Delta y_{ij} = \begin{vmatrix} \frac{\partial y_i}{\partial y_i} & \frac{\partial \Delta y_i}{\partial y_i} \\ \frac{\partial y_i}{\partial \Delta y_i} & \frac{\partial \Delta y_i}{\partial \Delta y_i} \end{vmatrix} dy_i dy_{ij}$$

$$= dy_i dy_{ij}$$

 y_{ij} Integration (originally Δy_{ij} integration)

$$= \frac{\sigma_{E}^{2} \sum_{a} (aw)^{2}}{\sum_{a} Q_{a}} + \sum_{N=1}^{\infty} P_{PI}(N; n\Delta Y) \sum_{M_{1}, M_{2}, \cdots, M_{N}} \prod_{i=1}^{N} \left[P_{SI}(M_{i}) \int_{-\Delta Y/2}^{\Delta Y/2} \frac{dy_{i}}{\Delta Y} \right] \\ \prod_{j=1}^{M_{i}} \left[\int_{-\infty}^{\infty} dy_{ij}(R(y_{ij}) + (1 - R(y_{ij}))) P_{D}(y_{ij} - y_{i}; \sigma_{d}) \int_{0}^{\infty} dG_{ij} P_{G}(G_{ij}) \right] \times \left[\left(\frac{\sum_{a} \sum_{b} (abw^{2}) \sum_{i=1}^{N} (_{\Delta x} - _{\Delta x} < F_{b}(x_{ij}) >_{\Delta x} \right) \sum_{j=1}^{M_{i}} G_{ij}^{2} R(y_{ij})^{2} \right) \\ + \left(\frac{\sum_{a} (aw) \sum_{i=1}^{N} _{\Delta x} \sum_{j=1}^{M_{i}} G_{ij} R(y_{ij})}{\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} G_{ij} R(y_{ij})} - \tilde{x} \right)^{2} \right]$$

$$\begin{aligned} & \text{Supposing } R(y_{ij}) = \theta(L/2 + y_{ij})\theta(L/2 - y_{ij}) \\ & \sum_{i}^{M_{i}} \text{ is replaced by } \sum_{i}^{k_{i}} \text{ and } R(y_{ij}) = 1 \text{ in the integrand.} \\ & \text{Using } \eta(y_{i}) = \int_{-\infty}^{+\infty} dy_{ij} P_{D}(y_{ij} - y_{i}) R(y_{ij}) \\ & = \frac{\sigma_{E}^{2} \sum_{a} (aw)^{2}}{\sum_{a} Q_{a}} \\ & + \sum_{N=1}^{\infty} P_{PI}(N; n\Delta Y) \sum_{M_{1}, M_{2}, \cdots, M_{N}} \prod_{i=1}^{N} \left[P_{SI}(M_{i}) \int_{-\Delta Y/2}^{\Delta Y/2} \frac{dy_{i}}{\Delta Y} \sum_{k_{i}=0}^{M_{i}} M_{i} C_{k_{i}} \eta(y_{i})^{k_{i}} (1 - \eta(y_{i}))^{M_{i}-k_{i}} \\ & \prod_{j=1}^{k_{i}} \left[\int_{0}^{\infty} dG_{ij} P_{G}(G_{ij}) \right] \right] \times \\ & \left[\left(\frac{\sum_{a} \sum_{b} (abw^{2}) \sum_{i=1}^{N} (< F_{a}(x_{i})) F_{b}(x_{i}) > \Delta x}{(\sum_{i=1}^{N} \sum_{j=1}^{k_{i}} G_{ij})^{2}} + \left(\frac{\sum_{a} (aw) \sum_{i=1}^{N} < F_{a}(x_{i}) > \Delta x}{\sum_{i=1}^{N} \sum_{j=1}^{k_{i}} G_{ij}} - \tilde{x} \right)^{2} \right] \end{aligned}$$

G_{ij} Integration

$$= \frac{\sigma_{E}^{2} \sum_{a} (aw)^{2}}{\sum_{a} Q_{a}}$$

$$+ \sum_{N=1}^{\infty} P_{PI}(N; n\Delta Y) \sum_{M_{1}, M_{2}, \cdots, M_{N}} \prod_{i=1}^{N} \left[P_{SI}(M_{i}) \int_{-\Delta Y/2}^{\Delta Y/2} \frac{dy_{i}}{\Delta Y} \sum_{k_{i}=0}^{M_{i}} M_{i} C_{k_{i}} \eta(y_{i})^{k_{i}} (1 - \eta(y_{i}))^{M_{i}-k_{i}} \right] \times \left[\left(\sum_{a} \sum_{b} (abw^{2}) \sum_{i=1}^{N} (_{\Delta x} - _{\Delta x} < F_{b}(x_{ij}) >_{\Delta x} \right) \times \right. \\ \left. \left. \sum_{j=1}^{k_{i}} \left\langle \frac{G_{ij}^{2}}{(\sum_{i=1}^{N} \sum_{j=1}^{k_{i}} G_{ij})^{2}} \right\rangle_{G_{ij}} \right\rangle \right] + \left(\sum_{a} (aw) \sum_{i=1}^{N} _{\Delta x} \sum_{j=1}^{k_{i}} \left\langle \frac{G_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{k_{i}} G_{ij}} \right\rangle_{G_{ij}} - \tilde{x} \right)^{2}$$

$$+ \sum_{a} \sum_{b} (abw^{2}) \sum_{i=1}^{N} _{\Delta x} _{\Delta x} \times \\ \sum_{j=1}^{k_{i}} \left(\left\langle \frac{G_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{K_{i}} G_{ij}} \right\rangle_{G_{ij}} - \left\langle \frac{G_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{k_{i}} G_{ij}} \right\rangle_{G_{ij}} \right)^{2}$$

$$= \frac{\sigma_E^2 \sum_a (aw)^2}{\sum_a Q_a} + \sum_{N=1}^{\infty} P_{PI}(N; n\Delta Y) \prod_{i=1}^N \left[\int_{-\Delta Y/2}^{\Delta Y/2} \frac{dy_i}{\Delta Y} \sum_{k_i=0}^{M_i} \bar{P}_{SI}(k_i, y_i) \right] \times \left[\left(\sum_a \sum_b (abw^2) \sum_{i=1}^N k_i \left(< F_a(x_{ij}) F_b(x_{ij}) >_{\Delta x} \left\langle \frac{G_{ij}^2}{(\sum_{i=1}^N \sum_{j=1}^{k_i} G_{ij})^2} \right\rangle_{G_{ij}} - < F_a(x_{ij}) >_{\Delta x} < F_b(x_{ij}) >_{\Delta x} \left\langle \frac{G_{ij}}{\sum_{i=1}^N \sum_{j=1}^{k_i} G_{ij}} \right\rangle_{G_{ij}}^2 \right) + \left(\sum_a (aw) \sum_{i=1}^N k_i < F_a(x_{ij}) >_{\Delta x} \left\langle \frac{G_{ij}}{\sum_{i=1}^N \sum_{j=1}^{k_i} G_{ij}} \right\rangle_{G_{ij}} - \tilde{x} \right)^2 \right]$$

$$\begin{aligned} \text{Using } \bar{P}_{SI}(k_{i}, y_{i}) &= \sum_{M_{i}=1}^{\infty} P_{SI}(M_{i})_{M_{i}} C_{k_{i}} \eta(y_{i})^{k_{i}} (1 - \eta(y_{i}))^{M_{i} - k_{i}} \\ &= \sum_{M_{i}=1}^{\infty} \sum_{k_{i}=0}^{M_{i}} \sum_{M_{i}=1}^{\infty} \sum_{k_{i}=0}^{\infty} \sum_{M_{i}=1}^{\infty} \\ &= \frac{\sigma_{E}^{2} \sum_{a} (aw)^{2}}{\sum_{a} Q_{a}} \\ &+ \sum_{N=1}^{\infty} P_{PI}(N; n\Delta Y) \prod_{i=1}^{N} \left[\int_{-\Delta Y/2}^{\Delta Y/2} \frac{dy_{i}}{\Delta Y} \sum_{k_{i}=0}^{M_{i}} \bar{P}_{SI}(k_{i}, y_{i}) \right] \times \\ &= \left[\left(\sum_{a} \sum_{b} (abw^{2}) \sum_{i=1}^{N} k_{i} \left(< F_{a}(x_{ij}) F_{b}(x_{ij}) >_{\Delta x} \left\langle \frac{G_{ij}^{2}}{(\sum_{i=1}^{N} \sum_{j=1}^{k_{i}} G_{ij})^{2} \right\rangle_{G_{ij}} \\ &- < F_{a}(x_{ij}) >_{\Delta x} < F_{b}(x_{ij}) >_{\Delta x} \left\langle \frac{G_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{k_{i}} G_{ij}} \right\rangle_{G_{ij}} \right) \\ &+ \left(\sum_{a} (aw) \sum_{i=1}^{N} k_{i} < F_{a}(x_{ij}) >_{\Delta x} \left\langle \frac{G_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{k_{i}} G_{ij}} \right\rangle_{G_{ij}} - \tilde{x} \right)^{2} \right] \end{aligned}$$