ILD in Mountain Site Hall

Karsten Buesser

02.03.2012
ILD Integration Webex

Overview

- Machine group is finalising the design of the civil facilities for the TDR/DBD
- This is in the focus of the ILC management: cost drivers!
- Discussions between detector concepts (SiD/ILD) and ILC CFS group have been intensified since Granada
- Dedicated meeting in December at SLAC: final input from detector groups
- Started with the "non-mountain" sites hall design finalised
- Japanese site requirements are different

ILD in Maintenance Region (non-mountain site)

CMS Assembly

CMS Assembly

ILD Assembly

- CMS-type assembly for non-mountain sites:
 - Pre-assemble and test ILD components on surface as far as possible
 - Lower five yoke rings with pre-installed detector components
 - About one year of assembly underground
- Non-CMS-type assembly for mountian sites:
 - Part sizes are limited by access tunnel
 - Yoke rings need to be built underground
 - Sub-detectors mostly installed underground
 - Need more time (~3y) and more underground space

ILD Design

• Assumption: basic detector model will not change for mountain sites

- Start with central ring on platform
- Space needed for: tools, scaffolding, surveying equipment

• 200t crane coverage needed

R. Stromhagen

• Tooling needs still under study

- Tolerances of the ring segments need to be better than 1 mm
- Laser surveying needed during full assembly
- Tools needed
 - 200t crane
 - chain hoists
 - taylored tools: beams etc.
 - hydraulics
 - surveyors
- Time estimate: 60 working days per ring

R. Stromhagen

Coil Installation

- Coil can only be transported without its ancillaries (cold box, chimney)
- Functional test needs to be done underground after installation into central barrel yoke ring
 - very low fields, yoke will not be ready by then
 - Takes ~3 months (incl. cool-down and warm-up)

R. Stromhagen

AHCAL Installation

AHCAL Installation

AHCAL/ECAL Installation

Endcap Calorimeter Installation

Calorimeter Installation

- Special tooling needed: support cradle, directly mounted to the coil
- Crane coverage
- Surveying equipment
- Time estimate for AHCAL barrel:
 - 180 working days
- ECAL barrel:
 - probably less
- Endcaps: ?

K. Gadow

SDHCAL Installation

Barrel design: ILD integration

Barrel with 5 wheels into the ILD

- -Wheels are linked together
- -Services installed then and connected between wheels

- -Barrel ready to be connected put in front of the coil
- -Insertion on the rails with tool

TPC Installation

Page 1

ID	Duration			Year 1			Year 2				Year 3 Yea			Year	ır 4			Year 5				
	Task Name		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
32	Move YBs	10 days											B									
33	Move YEs	10 days											1									
34	Move/install QD0 pillar	10 days											1									
35	Magnet commissioning	100 days											-		M	agnet	comn	nissio	ning			
36	Cool down	20 days												h								
37	High field tests	20 days											į	Y								
38	Field mapping	20 days																				
39	QD0 testing	20 days																				
40	Warm up	20 days													5							
41	Detector commissioning	120 days												ı	-		Det	ector	comr	missio	ning	
42	Detector commissioning and testing	120 days																				

- Critical path is defined by central detector construction:
 - central yoke ring, coil, barrel calorimeter, TPC, inner detector
- Will have three coexistent major "construction sites" at the same time in the underground hall:
 - barrel part, both endcaps
 - consecutively: two other barrel yoke rings, QD0 pillar, forward calorimeter
- Time estimate: 3.25 years
- But: need sufficient underground space!

Japanese Hall Design

Y. Sugimoto

• Probably not enough space for detector assembly and regular maintenance

Maintenance Position

• Changed hall model to enlarge alcoves in parking position (47m lateral space)

Larger Parking Position

- Lateral space is needed to open the detector, remove QD0 magnets, inner detector, TPC
- Alternative: rotate the detector by 90 deg before opening
 - Almost impossible
 - need to disconnect cable chains and possibly cryo lines
 - warm-up the coil

- Three "construction sites"
- Platform (1): central yoke ring, coil, barrel detector
- Alcoves (2,3): endcaps: yoke, calorimeter
- Crane coverage:
 - 200t in main hall
 - 100t in alcoves

- Three underground "construction sites" are minimum
 - Alcoves need to be enlarged (53m lateral space)
- Fourth might be needed for YB+/- barrel yoke rings, QD0 pillars, etc.
- For comparison: CMS surface assembly hall:
 ~25m x ~90m
 - we need about the same - underground

Loading area

- Three underground "construction sites" are minimum
 - Alcoves need to be enlarged (53m lateral space)
- Fourth might be needed for YB+/- barrel yoke rings, QD0 pillars, etc.
- For comparison: CMS surface assembly hall:
 ~25m x ~90m
 - we need about the same - underground

Loading area

- Three underground "construction sites" are minimum
 - Alcoves need to be enlarged (53m lateral space)
- Fourth might be needed for YB+/- barrel yoke rings, QD0 pillars, etc.
- For comparison: CMS surface assembly hall:
 ~25m x ~90m
 - we need about the same - underground

Loading area

CMS Surface Assembly Hall

CMS Surface Assembly Hall

CMS Surface Assembly Hall

Conclusion

- First attempt to define an assembly sequence for ILD in the mountain sites
- 3y+ underground assembly time seems feasible
 - Requires optimised underground conditions
- Current hall design probably too small for regular detector maintenance
- Current hall design probably too small for underground detector assembly
- Need to optimise the whole system detector/machine/hall w.r.t. assembly time schedule and cost!
- Need to understand trade-offs: space vs time